Referierte Publikationen


H. Gies, and L. Rössler
Vacuum polarization tensor in inhomogeneous magnetic fields
Phys. Rev. A, 84 :065035 (September 2011)
We develop worldline numerical methods, which combine string-inspired with Monte Carlo techniques, for the computation of the vacuum polarization tensor in inhomogeneous background fields for scalar QED. The algorithm satisfies the Ward identity exactly and operates on the level of renormalized quantities. We use the algorithm to study for the first time light propagation in a spatially varying magnetic field. Whereas a local derivative expansion applies to the limit of small variations compared to the Compton wavelength, the case of a strongly varying field can be approximated by a derivative expansion for the averaged field. For rapidly varying fields, the vacuum-magnetic refractive indices can exhibit a nonmonotonic dependence on the local field strength. This behavior can provide a natural limit on the self-focussing property of the quantum vacuum.
P. Hansinger, A. Dreischuh, and G.G. Paulus
Vortices in ultrashort laser pulses
Appl. Phys. B, 104 :561 (September 2011)
The propagation of optical vortices nested in broadband femtosecond laser beams was studied both numerically and experimentally. Based on the nonlinear Schrödinger equation, the dynamics of different multiple-vortex configurations with varying topological charge were modelled in self-focussing and self-defocussing Kerr media. We find a similar behavior in both cases regarding the vortex–vortex interaction. However, the collapsing background beam alters the propagation for a positive nonlinearity. Regimes of regular and possibly stable multiple filamentation were identified this way. Experiments include measurements on pairs of filaments generated in a vortex beam on an astigmatic Gaussian background with argon gas as the nonlinear medium. Spectral broadening of these filaments leads to a supercontinuum which spans from the visible range into the infrared. Recompression yields < 19 fs pulses. Further optimization may lead to much better recompression.
J. Bromage, J. Rothhardt, S. Hädrich, C. Dorrer, C. Jocher, S. Demmler, J. Limpert, A. Tünnermann, and J. D. Zügel
Analysis and suppression of parasitic processes in noncollinear optical parametric amplifiers
Opt. Express, 19 :16797 (August 2011)
The influence of parasitic processes on the performance of ultra-broadband noncollinear optical parametric amplifiers (NOPA’s) is investigated for walk-off and non-walk-off compensating configurations. Experimental results with a white-light–seeded NOPA agree well with numerical simulations. The same model shows that 10% of the output energy of an amplified signal can be transferred into a parasitic second harmonic of the signal. These findings are supported by quantitative measurements on a few-cycle NOPA, where a few percent of the signal energy is converted to its second harmonic in the walk-off compensating case. This effect is reduced by an order of magnitude in the non-walk-off compensating configuration. A detailed study of the phase-matching conditions of the most common nonlinear crystals provides guidelines for designing NOPA systems.
B. Aurand, S. Kuschel, C. Rödel, M. Heyer, F. Wunderlich, O. Jäckel, M.C. Kaluza, G.G. Paulus, and T. Kühl
Creating circularly polarized light with a phase-shifting mirror
Opt. Express, 19 :17151 (August 2011)
We report on the performance of a system employing a multi-layer coated mirror creating circularly polarized light in a fully reflective setup. With one specially designed mirror we are able to create laser pulses with an ellipticity of more than ε = 98% over the entire spectral bandwidth from initially linearly polarized Titanium:Sapphire femtosecond laser pulses. We tested the homogeneity of the polarization with beam sizes of the order of approximately 10 cm. The damage threshold was determined to be nearly 400 times higher than for a transmissive quartz-wave plate which suggests applications in high intensity laser experiments. Another advantage of the reflective scheme is the absence of nonlinear effects changing the spectrum or the pulse-form and the scalability of coating fabrication to large aperture mirrors.
B. Landgraf, M. Schnell, A. Sävert, M.C. Kaluza, and C. Spielmann
High resolution 3D gas-jet characterization
Rev. Sci. Instrum., 82 :083106 (August 2011)
We present a tomographic characterization of gas jets employed for high-intensity laser-plasma interaction experiments where the shape can be non-symmetrically. With a Mach-Zehnder interferometer we measured the phase shift for different directions through the neutral density distribution of the gas jet. From the recorded interferograms it is possible to retrieve 3-dimensional neutral density distributions by tomographic reconstruction based on the filtered back projections. We report on criteria for the smallest number of recorded interferograms as well as a comparison with the widely used phase retrieval based on an Abel inversion. As an example for the performance of our approach, we present the characterization of nozzles with rectangular openings or gas jets with shock waves. With our setup we obtained a spatial resolution of less than 60 μm for an Argon density as low as 2 × 10^17 cm^−3.
E. Kroupp, D. Osin, A. Starobinets, V. Fisher, V. Bernshtam, L. Weingarten, Y. Maron, I. Uschmann, E. Förster, A. Fisher, M. E. Cuneo, C. Deeney, and J. L. Giuliani
Ion Temperature and Hydrodynamic-Energy Measurements in a Z-Pinch Plasma at Stagnation
Phys. Rev. Lett., 107 :105001 (August 2011)
The time history of the local ion kinetic energy in a stagnating plasma was determined from Doppler-dominated line shapes. Using independent determination of the plasma properties for the same plasma region, the data allowed for inferring the time-dependent ion temperature, and for discriminating the temperature from the total ion kinetic energy. It is found that throughout most of the stagnation period the ion thermal energy constitutes a small fraction of the total ion kinetic energy; the latter is dominated by hydrodynamic motion. Both the ion hydrodynamic and thermal energies are observed to decrease to the electron thermal energy by the end of the stagnation period. It is confirmed that the total ion kinetic energy available at the stagnating plasma and the total radiation emitted are in balance, as obtained in our previous experiment. The dissipation time of the hydrodynamic energy thus appears to determine the duration (and power) of the K emission.
N. I. Shvetsov-Shilovski, A. M. Sayler, T. Rathje, and G.G. Paulus
Momentum distributions of sequential ionization generated by an intense laser pulse
Phys. Rev. A, 83 :033401 (August 2011)
The relative yield and momentum distributions of all multiply charged atomic ions generated by a short (30 fs) intense (10^14 - 5 × 10^18 W/cm2) laser pulse are investigated using a Monte Carlo simulation. We predict a substantial shift in the maximum (centroid) of the ion-momentum distribution along the laser polarization as a function of the absolute phase. This effect should be experimentally detectable with currently available laser systems even for relatively long pulses, such as 25 - 30 fs. In addition to the numerical results, we present semianalytical scaling for the position of the maximum.
F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
Avoided crossings in photonic crystal fibers
Opt. Express, 19 :13578 (July 2011)
The impact of avoided crossings (also known as anti-crossings) in single and double-clad large mode area Photonic Crystal Fibers (PCFs) suitable for high-power laser systems is evaluated numerically. It is pointed out that an inappropriate choice of pump core diameter, bending radius and/or index depression may lead to avoided crossings that manifest themselves in unwanted deformations of the output beam.
C. Kern, M. Zürch, J. Petschulat, T. Pertsch, B. Kley, T. Käsebier, U. Hübner, and C. Spielmann
Comparison of femtosecond laser-induced damage on unstructured vs. nano-structured Au-targets
Appl. Phys. A, 104 :15 (July 2011)
The combination of high-field physics with nano-plasmonics has proven to be feasible in producing high harmonics of intense laser radiation from noble gases, assisted by the field-enhancement effect in the proximity of metallic nano-antennas. However, the intensity region where harmonics can be generated without irreversible damage to these delicate structures is rather narrow. We explore the damage threshold of gold targets that exhibit regular structures on a nanoscopic scale, either explicitly resonant to the used laser frequency, or off-resonance. These are compared to values for bulk material in order to gain insight into the role of plasmonic resonances in the response of solid targets on intense laser radiation. We find that the presence of such a resonance lowers the threshold fluence (J/cm^2) where global structural damage sets in by about an order of magnitude. Statistical deviations either in local pulse energy of the damage inducing laser radiation or in the exact resonance behaviour of singular structures prove to be limited. These results should serve as a guideline for future experiments working near the damage threshold of more sophisticated antenna designs.
T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann
Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers
Opt. Express, 19 :13218 (July 2011)
We report on the observation and experimental characterization of a threshold-like onset of mode instabilities, i.e. an apparently random relative power content change of different transverse modes, occurring in originally single-mode high-power fiber amplifiers. Although the physical origin of this effect is not yet fully understood, we discuss possible explanations. Accordingly, several solutions are proposed in this paper to raise the threshold of this effect.
A. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. Rohwer, J. Limpert, and A. Tünnermann
High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber
Opt. Express, 19 :13873 (July 2011)
We demonstrate nonlinear pulse compression based on recently introduced highly coherent broadband supercontinuum (SC) generation in all-normal dispersion photonic crystal fiber (ANDi PCF). The special temporal properties of the octave-spanning SC spectra generated with 15 fs, 1.7 nJ pulses from a Ti:Sapphire oscillator in a 1.7 mm fiber piece allow the compression to 5.0 fs high quality pulses by linear chirp compensation with a compact chirped mirror compressor. This is the shortest pulse duration achieved to date from the external recompression of SC pulses generated in PCF. Numerical simulations in excellent agreement with the experimental results are used to discuss the scalability of the concept to the single-cycle regime employing active phase shaping. We show that previously reported limits to few-cycle pulse generation from compression of SC spectra generated in conventional PCF possessing one or more zero dispersion wavelengths do not apply for ANDi PCF.
A. Gumberidze, T. Stöhlker, D. Banaś, H. F. Beyer, C. Brandau, H. Bräuning, S. Geyer, S. Hagmann, S. Hess, P. Indelicato, P. Jagodzinski, C. Kozhuharov, A. Kumar, D. Liesen, R. Märtin, R. Reuschl, S. Salem, A. Simon, U. Spillmann, M. Trassinelli, S. Trotsenko, G. Weber, and D. F. A. Winters
Precision studies of fundamental atomic structure with heaviest few-electron ions
Hyperfine Interact., 199 :59 (July 2011)
One- and few-electron ions traditionally serve as an important testing ground for fundamental atomic structure theories and for the effects of QED, relativity and electron correlation. In the domain of high nuclear charges, new opportunities open up for precise testing and consolidating of the present understanding of the atomic structure in the regime of extreme electromagnetic fields. In this review, the current progress in experimental investigations of the heaviest H- and He-like systems at GSI Darmstadt is presented together with the planned future developments.
S. Keppler, R. Bödefeld, M. Hornung, A. Sävert, J. Hein, and M.C. Kaluza
Prepulse suppression in a multi-10-TW diode-pumped Yb:glass laser
Appl. Phys. B, 104 :11 (July 2011)
We describe a novel method to improve the temporal intensity contrast (TIC) between the main pulse and prepulses in a high-power chirped-pulse amplification (CPA) laser system. Pre- and post-pulses originating from the limited extinction ratio of the polarization gating equipment are suppressed by carefully adjusting the round-trip times of the regenerative amplifiers (RAs) with respect to the oscillator. As a result, leaking pulses from earlier or later round-trips in the RAs are hidden below the temporal shape of the main pulse. The synchronization can easily be controlled by a contrast measurement on a picosecond time scale using a third-order cross-correlator that enables a sub-mm precise adjustment of the cavity lengths. Finally, a method based on spectral interference is introduced that can be used for a fine-adjustment of the cavity lengths for the daily operation, making this new method easy to implement into existing laser systems.
A. Buck, M. Nicolai, K. Schmid, C. Sears, A. Sävert, J. Mikhailova, F. Krausz, M.C. Kaluza, and L. Veisz
Real-time observation of laser-driven electron acceleration
Nat. Phys., 7 :543 (July 2011)
Electron acceleration by laser-driven plasma waves is capableof producing ultra-relativistic, quasi-monoenergetic electron bunches with orders of magnitude higher accelerating gradients and much shorter electron pulses than state-of-the-art radio-frequency accelerators. Recent developments have shown peak energies reaching into the GeV range and improved stability and control over the energy spectrum and charge. Future applications, such as the development of laboratory X-ray sources with unprecedented peak brilliance or ultrafast time-resolved measurements critically rely on a temporal characterization of the acceleration process and the electron bunch. Here, we report the first real-time observation of the accelerated electron pulse and the accelerating plasma wave. Our time-resolved study allows a single-shot measurement of the (5.8_(−2.1))^(+1.9) fs electron bunch full-width at half-maximum ((2.5_(−0.9))^(+0.8) fs root mean square) as well as the plasma wave with a density-dependent period of 12–22 fs and reveals the evolution of the bunch, its position in the surrounding plasma wave and the wake dynamics. The results afford promise for brilliant, sub-ångström-wavelength ultrafast electron and photon sources for diffraction imaging with atomic resolution in space and time.
M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, and F. Tavella
Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification
Opt. Lett., 36 :2456 (July 2011)
We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding.
R. Geithner, R. Neubert, W. Vodel, M. Schwickert, H. Reeg, R. von Hahn, and P. Seidel
A Non-Destructive Beam Monitoring System Based on an LTS-SQUID
IEEE Trans. Appl. Supercond., 21 :444 (June 2011)
Monitoring of beam currents in particle accelerators without affecting the beam guiding elements, interrupting the beam or influencing its profile is a major challenge in accelerator technology. A solution to this problem is the detection of the magnetic field generated by the moving charged particles. We present a non-destructive beam monitoring system for particle beams in accelerators based on the Cryogenic Current Comparator (CCC) principle. The CCC consists of a high-performance low-temperature DC superconducting quantum interference device (LTS DC-SQUID) system, a toroidal pick-up coil, and a meander-shaped superconducting niobium shield. This device allows the measurement of continuous as well as pulsed beam currents in the nA-range. The resolution and the frequency response of the detector strongly depend on the toroidal pick-up coil and its embedded ferromagnetic core. Investigations of both the temperature and frequency dependence of the relative permeability and the noise contribution of several nanocrystalline ferromagnetic core materials are crucial to optimize the CCC with respect to an improved signal-to-noise ratio and extended transfer bandwidth.
A. P. L. Robinson, R. M. G. M. Trines, J. Polz, and M.C. Kaluza
Absorption of circularly polarized laser pulses in near-critical plasmas
Plasma Phys. Contr. F., 53 :065019 (June 2011)
The absorption of an ultra-intense circularly-polarized laser pulse by a near-critical (0.1 n_c < n_e < a_0 n_c) plasma is studied. Previously two regimes of absorption have been suggested: a 'leading edge depletion' (LED) regime and a 'transverse ponderomotive acceleration' regime. Here we seek to describe these concepts more thoroughly, and determine if two distinct regimes actually exist. New analytic models to describe each regime are derived. These are compared with 1D and 2D particle-in-cell simulations, and good quantitative agreement is found, showing the existence of two separate regimes. The LED regime exhibits very efficient absorption of laser light, which is promising for applications.
V. P. Shevelko, I. L. Beigman, M. S. Litsarev, H. Tawara, I. Yu. Tolstikhina, and G. Weber
Charge-changing processes in collisions of heavy many-electron ions with neutral atoms
Nucl. Instr. Meth. Phys. Res. B, 269 :1455 (June 2011)
Some features of charge-changing processes, namely, electron capture (EC) and electron loss (EL), are considered for heavy many-electron ions colliding with neutral atoms in a wide range of ion energy E = 10 keV/u – 100 GeV/u. The discussion is based on cross-section calculations performed by available computer codes, namely, CAPTURE, DEPOSIT and RICODE. The RICODE (Relativistic Ionization CODE), which provides calculation of single-electron loss cross sections in the relativistic energy regime, was recently created on the basis of the relativistic Born approximation and is described in the Appendix A. In addition, a semi-empirical formula for single-electron loss cross sections is suggested based on properties of the Born approximation and numerical calculations by the RICODE program. To cover also the low and intermediate collision energies, EL cross sections are obtained by the recently created DEPOSIT code which provides calculation of single- and multiple-electron as well as the total cross sections. Based on the results obtained by these codes, recommended capture and loss cross sections for heavy ions like xenon, uranium and lead ions colliding with neutral atoms are presented over a wide energy range.
M. Trassinelli, A. Kumar, H. F. Beyer, P. Indelicato, R. Märtin, R. Reuschl, Y. S. Kozhedub, C. Brandau, H. Bräuning, S. Geyer, A. Gumberidze, S. Hess, P. Jagodzinski, C. Kozhuharov, D. Liesen, U. Spillmann, S. Trotsenko, G. Weber, D. F. A. Winters, and T. Stöhlker
Differential energy measurement between He- and Li-like uranium intra-shell transitions
Phys. Scripta, T144 :014003 (June 2011)
We present the first clear identification and highly accurate measurement of the intra-shell transition 1s2p^3P_2 → 1s2s^3S_1 of He-like uranium performed via x-ray spectroscopy. The present experiment was conducted at the gas-jet target of the ESR storage ring in GSI (Darmstadt, Germany), where a Bragg spectrometer, with a bent germanium crystal, and a Ge(i) detector were mounted. Using the ESR deceleration capabilities, we performed a differential measurement between the 1s2p^3P_2→1s2s^3S_1 He-like U transition energy, at 4510 eV, and the 1s^2 2p^2P_(3/2) → 1s^2 2s^2S_(1/2) Li-like U transition energy, at 4460 eV. By a proper choice of the ion velocities, the x-ray energies from the He- and Li-like ions could be measured, in the laboratory frame, at the same photon energy. This allowed for a drastic reduction of experimental systematic uncertainties, principally due to the Doppler effect, and for a comparison with theory without the uncertainties arising from one-photon quantum electrodynamics predictions and nuclear size corrections.
D. F. A. Winters, T. Kühl, D. H. Schneider, P. Indelicato, R. Reuschl, R. Schuch, E. Lindroth, and T. Stöhlker
Laser spectroscopy of the (1s2 2s2p) 3P0–3P1 level splitting in Be-like krypton
Phys. Scripta, T144 :014013 (June 2011)
Heavy few-electron ions, such as He-, Li- and Be-like ions, are ideal atomic systems to study the effects of correlation, relativity and quantum electrodynamics. Very recently, theoretical and experimental studies of these species achieved a considerable improvement in accuracy. Be-like ions are interesting because their first excited state, i.e. (1s2 2s2p)3P0, has an almost infinite lifetime (τ0) in the absence of nuclear spin (I), as it can only decay by a two-photon E1M1 transition to the (1s2 2s2)1S0 ground state. In addition, the energy difference between the 3P0 and the next higher-lying 3P1 state is expected to remain almost completely unaffected by QED effects, and should thus be dominated by the effects of correlation and relativity. Therefore, we want to determine the (1s2 2s2p) 3P0–3P1 level splitting in Be-like krypton (84Kr32+), which has I=0, by means of laser spectroscopy at the experimental storage ring at GSI. In such an experiment, the energy splitting can be obtained with very good accuracy and can be compared with recent calculations.
G. Weber, H. Bräuning, R. Märtin, U. Spillmann, and T. Stöhlker
Monte Carlo simulations for the characterization of position-sensitive x-ray detectors dedicated to Compton polarimetry
Phys. Scripta, T144 :014034 (June 2011)
We present here a Monte Carlo program based on the EGS5 package for modeling the detector response of position-sensitive x-ray detectors. The program is used to estimate the polarimeter quality of two novel detector systems applied in Compton polarimetry. The validity of the underlying physical models is verified by comparing the simulation output to experimental data obtained at the experimental storage ring, ESR.
F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann
Non-hexagonal Large-Pitch Fibers for enhanced mode discrimination
Opt. Express, 19 :12081 (June 2011)
Photonic-Crystal Fibers (PCF) are among the most promising concepts to achieve large mode field areas suitable for the reduction of nonlinearities in fibers. Differential mode propagation loss is the cornerstone of effective single-mode behavior in passive and core-pumped active PCFs. In this work, we explore non-hexagonal PCF designs with increased mode discrimination in comparison to the classical hexagonal PCF designs. It is shown that a pentagonal design can increase the mode discrimination and, simultaneously, also improve the beam quality of Large-Pitch Fibers with mode field diameters well beyond 100 µm.
Y. Nakano, Y. Takano, T. Shindo, T. Ikeda, Y. Kanai, S. Suda, T. Azuma, H. Bräuning, A. Bräuning-Demian, T. Stöhlker, D. Dauvergne, and Y. Yamazaki
Observation of intrashell radiative decay of Li-like uranium (2p_(3/2) - 2s_(1/2)) using silicon drift detectors
Phys. Scripta, T144 :014010 (June 2011)
We observed the x-ray emission of 191.7 MeV u^(−1) Li-like uranium associated with resonant coherent excitation from 1s^(2) 2s to 1s^(2) 2p_(3/2) (4459 eV) in a thin silicon crystal target. De-excitation x-rays were observed by using large-area silicon drift detectors installed inside the target vacuum chamber together with their preamplifiers. We found that the x-ray yield under the resonance condition was clearly enhanced by a factor of three compared to that under the random incidence condition.
R. Märtin, R. Barday, D. Jakubassa-Amundsen, J. Enders, Y. Poltoratska, U. Spillmann, A. Surzhykov, G. Weber, V. A. Yerokhin, and T. Stöhlker
Polarization Of The High-Energy End Of The Electron-Nucleus Bremsstrahlung In Electron-Atom Collisions
AIP Conf. Proc., 1336 :94 (June 2011)
The linear polarization of bremsstrahlung radiation emitted in collisions of spin‐polarized and unpolarized electrons with carbon and gold targets has been measured for an incident kinetic energy of 100 keV. We present preliminary results for the degree of linear polarization for incident unpolarized electrons as a function of bremsstrahlung photon energy.
T. Stöhlker, H. F. Beyer, A. Bräuning-Demian, C. Brandau, A. Gumberidze, R. E. Grisenti, S. Hagmann, F. Herfurth, Ch. Kozhuharov, T. Kühl, D. Liesen, Yu. Litvinov, R. Märtin, W. Nörtershäuser, O. Kester, N. Petridis, W. Quint, U. Schramm, R. Schuch, U. Spillmann, S. Trotsenko, and G. Weber
SPARC: The Stored Particle Atomic Research Collaboration At FAIR
AIP Conf. Proc., 1336 :132 (June 2011)
The future international accelerator Facility for Antiproton and Ion Research (FAIR) encompasses 4 scientific pillars containing at this time 14 approved technical proposals worked out by more than 2000 scientists from all over the world. They offer a wide range of new and challenging opportunities for atomic physics research in the realm of highly‐charged heavy ions and exotic nuclei. As one of the backbones of the Atomic, Plasma Physics and Applications (APPA) pillar, the Stored Particle Atomic Physics Research Collaboration (SPARC) has organized tasks and activities in various working groups for which we will present a concise survey on their current status.