Referierte Publikationen

2013

S. Fuchs, C. Rödel, M. Krebs, S. Hädrich, J. Bierbach, A. E. Paz, S. Kuschel, M. Wünsche, V. Hilbert, U. Zastrau, E. Förster, J. Limpert, and G.G. Paulus
Sensitivity calibration of an imaging extreme ultraviolet spectrometer-detector system for determining the efficiency of broadband extreme ultraviolet sources
Rev. Sci. Instrum., 84 :023101 (February 2013)
Abstract:
We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 μW and μJ per harmonic using the respective generation mechanisms.
F. Stutzki, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann
2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality
Opt. Lett., 38 :97 (January 2013)
Abstract:
We report on a high pulse energy and high average power Q-switched Tm-doped fiber oscillator. The oscillator produces 2.4 mJ pulses with 33 W average power (at a repetition rate of 13.9 kHz) and nearly diffraction-limited beam quality. This record performance is enabled by a Tm-doped large-pitch fiber, which allows for large core diameters in combination with effective single-mode operation.
B. Döbrich, H. Gies, N. Neitz, and F. Karbstein
Magnetically amplified light-shining-through-walls via virtual minicharged particles
Phys. Rev. D, 87 :025022 (January 2013)
Abstract:
We show that magnetic fields have the potential to significantly enhance a recently proposed light-shining-through-walls scenario in quantum-field theories with photons coupling to minicharged particles. Suggesting a dedicated laboratory experiment, we demonstrate that this particular tunneling scenario could provide access to a parameter regime competitive with the currently best direct laboratory limits on minicharged fermions below the meV regime. With present day technology, such an experiment has the potential to even overcome the best model-independent cosmological bounds on minicharged fermions with masses below O(10^(-4))  eV.

2012

S. Breitkopf, A. Klenke, T. Gottschall, H. Otto, C. Jauregui, J. Limpert, and A. Tünnermann
58 mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier
Opt. Lett., 37 :5169 (December 2012)
Abstract:
We report on a laser system producing a burst comprising femtosecond pulses with a total energy of 58 mJ. Every single pulse within this burst has an energy between 27 and 31 μJ. The pump is able to rebuild the inversion fast enough between the pulses, resulting in an almost constant gain for every pulse during the burst. This causes a very homogenous energy distribution during the burst. The output burst has a repetition frequency of 20 Hz, is 200 μs long and, therefore, contains 2000 pulses at a pulse repetition rate of 10 MHz.
X. Xie, K. Doblhoff-Dier, S. Roither, M. Schöffler, D. Kartashov, H. Xu, T. Rathje, G. Paulus, A. Baltuska, S. Gräfe, and M. Kitzler
Attosecond-Recollision-Controlled Selective Fragmentation of Polyatomic Molecules
Phys. Rev. Lett., 109 :243001 (December 2012)
Abstract:
Control over various fragmentation reactions of a series of polyatomic molecules (acetylene, ethylene, 1,3-butadiene) by the optical waveform of intense few-cycle laser pulses is demonstrated experimentally. We show both experimentally and theoretically that the responsible mechanism is inelastic ionization from inner-valence molecular orbitals by recolliding electron wave packets, whose recollision energy in few-cycle ionizing laser pulses strongly depends on the optical waveform. Our work demonstrates an efficient and selective way of predetermining fragmentation and isomerization reactions in polyatomic molecules on subfemtosecond time scales.
K. J. Betsch, N. Johnson, B. Bergues, M. Kübel, O. Herrwerth, A. Senftleben, I. Ben-Itzhak, G.G. Paulus, R. Moshammer, J. Ullrich, M. F. Kling, and R. R. Jones
Controlled directional ion emission from several fragmentation channels of CO driven by a few-cycle laser field
Phys. Rev. A, 86 :063403 (December 2012)
Abstract:
We explore the dissociative ionization of CO with carrier-envelope-phase (CEP) tagged few-cycle laser pulses. We observe the CEP dependence of the directional emission of C^(p+) and O^(q+) fragments from transient CO^([p+q]+) ions, where p + q ≤ 3 and q ≤ 1. At I_0 = 3.5 × 10^(14) W/cm^2, a 180°. phase difference between the C^(+) and O^(+) fragments from the (p=1, q=0) and (p=0, q=1) channels reflects the orientation dependence of the CO ionization. At I_0 = 1.2 × 10^(15) W/cm^2, we find a ~35° phase shift between the C^(2+) fragments from the (p = 2, q = 0) and (p = 2, q = 1) channels, in contrast to the 180∘ shift previously observed between the C2+ fragment channels at I_0 = 6 × 10^(14) W/cm^2 [ Phys. Rev. Lett. 106 073004 (2011)].
P. Neumayer, B. Aurand, R. Fraga, B. Ecker, R. E. Grisenti, A. Gumberidze, D. C. Hochhaus, A. Kalinin, M.C. Kaluza, T. Kühl, J. Polz, R. Reuschl, T. Stöhlker, D. Winters, N. Winters, and Z. Yin
Evidence for ultra-fast heating in intense-laser irradiated reduced-mass targets
Phys. Plasmas, 19 :122708 (December 2012)
Abstract:
We report on an experiment irradiating individual argon droplets of 20 μm diameter with laser pulses of several Joule energy at intensities of 10^19 W/cm^2. K-shell emission spectroscopy was employed to determine the hot electron energy fraction and the time-integrated charge-state distribution. Spectral fitting indicates that bulk temperatures up to 160 eV are reached. Modelling of the hot-electron relaxation and generation of K-shell emission with collisional hot-electron stopping only is incompatible with the experimental results, and the data suggest an additional ultra-fast (sub-ps) heating contribution. For example, including resistive heating in the modelling yields a much better agreement with the observed final bulk temperature and qualitatively reproduces the observed charge state distribution.
B. King, H. Gies, and A. Di Piazza
Pair production in a plane wave by thermal background photons
Phys. Rev. A, 86 :125007 (December 2012)
Abstract:
Ever since Schwinger published his influential paper [J. Schwinger Phys. Rev. 82 664 (1951)], the maxim that there can be no pair creation in a plane wave has been often cited. We advance an analysis that indicates that in any real situation, where thermal effects are present, in a single plane-wave field, even in the limit of zero frequency (a constant crossed field), thermal photons can seed pair creation. Interestingly, the pair-production rate is found to depend nonperturbatively on both the amplitude of the constant crossed field and on the temperature.
A. Eichhorn, H. Gies, and D. Roscher
Renormalization flow of axion electrodynamics
Phys. Rev. D, 86 :125014 (December 2012)
Abstract:
We study the renormalization flow of axion electrodynamics, concentrating on the nonperturbative running of the axion-photon coupling and the mass of the axion(-like) particle. Due to a nonrenormalization property of the axion-photon vertex, the renormalization flow is controlled by photon and axion anomalous dimensions. As a consequence, momentum-independent axion self-interactions are not induced by photon fluctuations. The nonperturbative flow towards the ultraviolet exhibits a Landau-pole-type behavior, implying that the system has a scale of maximum UV extension and that the renormalized axion-photon coupling in the deep infrared is bounded from above. Even though gauge invariance guarantees that photon fluctuations do not decouple in the infrared, the renormalized couplings remain finite even in the deep infrared and even for massless axions. Within our truncation, we also observe the existence of an exceptional renormalization group trajectory, which is extendable to arbitrarily high scales, without being governed by a UV fixed point.
B. Dromey, S. Rykovanov, M. Yeung, R. Hörlein, D. Jung, D. C. Gautier, T. Dzelzainis, D. Kiefer, S. Palaniyppan, R. Shah, J. Schreiber, H. Ruhl, J. C. Fernandez, C. L. S. Lewis, M. Zepf, and B. M. Hegelich
Coherent synchrotron emission from electron nanobunches formed in relativistic laser-plasma interactions
Nat. Phys., 8 :804 (November 2012)
Abstract:
Extreme ultraviolet (XUV) and X-ray harmonic spectra produced by intense laser - solid interactions have, so far, been consistent with Doppler upshifted reflection from collective relativistic plasma oscillations - the relativistically oscillating mirror mechanism. Recent theoretical work, however, has identified a new interaction regime in which dense electron nanobunches are formed at the plasma–vacuum boundary resulting in coherent XUV radiation by coherent synchrotron emission (CSE). Our experiments enable the isolation of CSE from competing processes, demonstrating that electron nanobunch formation does indeed occur. We observe spectra with the characteristic spectral signature of CSE - a slow decay of intensity, I, with high-harmonic order, n, as I(n) ~ n^(−1.62) before a rapid efficiency rollover. Particle-in-cell code simulations reveal how den se nanobunches of electrons are periodically formed and accelerated during normal-incidence interactions with ultrathin foils and result in CSE in the transmitted direction. This observation of CSE presents a route to high-energy XUV pulses and offers a new window on understanding ultrafast energy coupling during intense laser - solid density interactions.
E. Siminos, M. Grech, S. Skupin, T. Schlegel, and V. T. Tikhonchuk
Effect of electron heating on self-induced transparency in relativistic-intensity laser-plasma interactions
Phys. Rev. E, 86 :056404 (November 2012)
Abstract:
The effective increase of the critical density associated with the interaction of relativistically intense laser pulses with overcritical plasmas, known as self-induced transparency, is revisited for the case of circular polarization. A comparison of particle-in-cell simulations to the predictions of a relativistic cold-fluid model for the transparency threshold demonstrates that kinetic effects, such as electron heating, can lead to a substantial increase of the effective critical density compared to cold-fluid theory. These results are interpreted by a study of separatrices in the single-electron phase space corresponding to dynamics in the stationary fields predicted by the cold-fluid model. It is shown that perturbations due to electron heating exceeding a certain finite threshold can force electrons to escape into the vacuum, leading to laser pulse propagation. The modification of the transparency threshold is linked to the temporal pulse profile, through its effect on electron heating.
B. Ecker, E. Oliva, B. Aurand, D. C. Hochhaus, P. Neumayer, H. Zhao, B. Zielbauer, K. Cassou, S. Daboussi, O. Guilbaud, S. Kazamias, T. T. T. Le, D. Ros, P. Zeitoun, and T. Kühl
Gain lifetime measurement of a Ni-like Ag soft X-ray laser
Opt. Express, 20 :25391 (November 2012)
Abstract:
Experimental results of a two-stage Ni-like Ag soft X-ray laser operated in a seed-amplifier configuration are presented. Both targets were pumped applying the double-pulse grazing incidence technique with intrinsic travelling wave excitation. The injection of the seed X-ray laser into the amplifier target was realized by a spherical mirror. The results show amplification of the seed X-ray laser and allow for a direct measurement of the gain lifetime. The experimental configuration is suitable for providing valuable input for computational simulations.
F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
High-power very large mode-area thulium-doped fiber laser
Opt. Lett., 37 :4546 (November 2012)
Abstract:
Large-pitch photonic-crystal fibers have demonstrated their unique capability of combining very large mode areas, high output powers and robust single-mode operation at a wavelength of 1 μm. In this Letter, we present the experimental realization of thulium-doped very large mode-area fibers based on the large-pitch fibers with record mode-field diameters exceeding 60 μm and delivering more than 52 W of output power.
S. Hädrich, J. Rothhardt, M. Krebs, S. Demmler, J. Limpert, and A. Tünnermann
Improving carrier-envelope phase stability in optical parametric chirped-pulse amplifiers by control of timing jitter
Opt. Lett., 37 :4910 (November 2012)
Abstract:
It is shown that timing jitter in optical parametric chirped-pulse amplification induces spectral drifts that transfer to carrier-envelope phase (CEP) instabilities via dispersion. Reduction of this effect requires temporal synchronization, which is realized with feedback obtained from the angularly dispersed idler. Furthermore, a novel method to measure the CEP drifts by utilizing parasitic second harmonic generation within parametric amplifiers is presented. Stabilization of the timing allows the obtainment of a CEP stability of 86 mrad over 40 min at 150 kHz repetition rate.
S. Kar, K. F. Kakolee, B. Qiao, A. Macchi, M. Cerchez, D. Doria, M. Geissler, P. McKenna, D. Neely, J. Osterholz, R. Prasad, K. Quinn, B. Ramakrishna, G. Sarri, O. Willi, X. Y. Yuan, M. Zepf, and M. Borghesi
Ion Acceleration in Multispecies Targets Driven by Intense Laser Radiation Pressure
Phys. Rev. Lett., 109 :185006 (November 2012)
Abstract:
The acceleration of ions from ultrathin foils has been investigated by using 250 TW, subpicosecond laser pulses, focused to intensities of up to 3 × 10^(20)  W cm^(-2). The ion spectra show the appearance of narrow-band features for protons and carbon ions peaked at higher energies (in the 5 - 10  MeV/nucleon range) and with significantly higher flux than previously reported. The spectral features and their scaling with laser and target parameters provide evidence of a multispecies scenario of radiation pressure acceleration in the light sail mode, as confirmed by analytical estimates and 2D particle-in-cell simulations. The scaling indicates that monoenergetic peaks with more than 100  MeV/nucleon are obtainable with moderate improvements of the target and laser characteristics, which are within reach of ongoing technical developments.
R. Lötzsch, O. Jäckel, S. Höfer, T. Kämpfer, J. Polz, I. Uschmann, M.C. Kaluza, E. Förster, E. Stambulchik, E. Kroupp, and Y. Maron
K-shell spectroscopy of silicon ions as diagnostic for high electric fields
Rev. Sci. Instrum., 83 :113507 (November 2012)
Abstract:
We developed a detection scheme, capable of measuring X-ray line shape of tracer ions in μm thick layers at the rear side of a target foil irradiated by ultra intense laser pulses. We performed simulations of the effect of strong electric fields on the K-shell emission of silicon and developed a spectrometer dedicated to record this emission. The combination of a cylindrically bent crystal in von Hámos geometry and a CCD camera with its single photon counting capability allows for a high dynamic range of the instrument and background free spectra. This approach will be used in future experiments to study electric fields of the order of TV/m at high density plasmas close to solid density.
C. Jocher, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann
Sub 25 fs pulses from solid-core nonlinear compression stage at 250 W of average power
Opt. Lett., 37 :4407 (November 2012)
Abstract:
We report on a highpower femtosecond fiber chirped-pulse amplification system with an excellent beam quality (M^2 = 1.2) operating at 250 MHz repetition rate. We demonstrate nonlinear compression in a solid-core photonic crystal fiber at unprecedented average power levels. By exploiting self-phase modulation with subsequent chirped-mirror compression we achieve pulse shortening by more than one order of magnitude to 23 fs pulses. The use of circular polarization allows higher than usual peak powers in the broadening fiber resulting in compressed 0.9 μJ pulse energy and a peak power of 34 MW at 250 W of average power (M^2 = 1.3). This system is well suited for driving cavity-enhanced high-repetition rate high-harmonic generation.
S. Demmler, J. Rothhardt, S. Hädrich, J. Bromage, J. Limpert, and A. Tünnermann
Control of nonlinear spectral phase induced by ultra-broadband optical parametric amplification
Opt. Lett., 37 :3933 (October 2012)
Abstract:
Optical parametric amplifiers (OPAs) impose an optical parametric phase (OPP) onto the amplified signal. It manifests itself as a spectral phase in the case of broadband signals and, therefore, hampers pulse compression. Here we present, for the first time, a complete experimental characterization of this OPP for different ultra-broadband noncollinear OPA configurations. This measurement allows us to compensate the OPP and to achieve Fourier-limited pulses as short as 1.9 optical cycles. A numerical model is in excellent agreement with our measurements and reveals the importance of high order phase compensation in the case of noncollinear phase matching. In contrast, operation at degeneracy enables almost complete compensation of the OPP by second-order dispersion only.
C. Jauregui, A. Steinmetz, J. Limpert, and A. Tünnermann
High-power efficient generation of visible and mid-infrared radiation exploiting four-wave-mixing in optical fibers
Opt. Express, 20 :24957 (October 2012)
Abstract:
We report on the generation of 17.6 W of visible radiation at 650 nm using four-wave-mixing in an endlessly single-mode silica fiber. The conversion efficiency was as high as ~ 30%. This high efficiency could be obtained by exploiting the natural absorption of silica for the mid-infrared radiation > 2.5µm. In a separate experiment 1.6 W of mid-IR radiation at 2570 nm were generated simultaneously with 14.4 W at 672 nm. These power levels of picosecond red radiation are among the highest reported so far for a diffraction limited beam quality in this wavelength region.
T. Kiefer, and T. Schlegel
Implications for the electron distribution from the stationary hydrodynamic model of a one-dimensional plasma expansion into vacuum
Phys. Plasmas, 19 :102101 (October 2012)
Abstract:
It is shown that the hydrodynamic model of a one-dimensional collisionless plasma expansion is contained in the kinetic description as a special case. This belongs to a specific choice for the electron distribution function. Moreover, the consequences of the use of the hydrodynamic approach regarding the temporal evolution of the electron phase space density are investigated. It turns out that only the case of a hydrodynamic description with the adiabatic constant κ = 3 is physically self-consistent. Numerical simulations confirm this argumentation. The analysis for the case κ = 3 is extended to the kinetics of a relativistic electron gas.
M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and C. Spielmann
Strong-field physics with singular light beams
Nat. Phys., 8 :743 (October 2012)
Abstract:
Light beams carrying a point singularity with a screw-type phase distribution are associated with an optical vortex. The corresponding momentum flow leads to an orbital angular momentum of the photons. The study of optical vortices has led to applications such as particle micro-manipulation, imaging, interferometry, quantum information and high-resolution microscopy and lithography. Recent analyses showed that transitions forbidden by selection rules seem to be allowed when using optical vortex beams. To exploit these intriguing new applications, it is often necessary to shorten the wavelength by nonlinear frequency conversion. However, during the conversion the optical vortices tend to break up. Here we show that optical vortices can be generated in the extreme ultraviolet (XUV) region using high-harmonic generation. The singularity impressed on the fundamental beam survives the highly nonlinear process. Vortices in the XUV region have the same phase distribution as the driving field, which is in contradiction to previous findings, where multiplication of the momentum by the harmonic order is expected. This approach opens the way for several applications based on vortex beams in the XUV region.
M. Kübel, K. J. Betsch, N. Johnson, U. Kleineberg, R. Moshammer, J. Ullrich, G.G. Paulus, M. F. Kling, and B. Bergues
Carrier-envelope-phase tagging in measurements with long acquisition times
New J. Phys., 14 :093027 (September 2012)
Abstract:
We present a detailed analysis of the systematic errors that affect single-shot carrier envelope phase (CEP) measurements in experiments with long acquisition times, for which only limited long-term laser stability can be achieved. After introducing a scheme for eliminating these systematic errors to a large extent, we apply our approach to investigate the CEP dependence of the yield of doubly charged ions produced via non-sequential double ionization of argon in strong near-single-cycle laser pulses. The experimental results are compared to predictions of semiclassical calculations.
V. Yerokhin, A. Surzhykov, R. Märtin, S. Tashenov, and G. Weber
Comparative study of the electron-atom and positron-atom bremsstrahlung
Phys. Rev. A, 86 :032708 (September 2012)
Abstract:
Fully relativistic treatment of the electron-atom and positron-atom bremsstrahlung is reported. The calculation is based on the partial-wave expansion of the Dirac scattering states in an external atomic field. A comparison of the electron and positron bremsstrahlung is presented for the single and double differential cross sections and the Stokes parameters of the emitted photon. It is demonstrated that the electron-positron symmetry of the bremsstrahlung spectra, which is nearly exact in the nonrelativistic regime, is to a large extent removed by the relativistic effects.
U. Zastrau, C. R. D. Brown, T. Döppner, S. H. Glenzer, G. Gregori, H. J. Lee, H. Marschner, S. Toleikis, O. Wehrhan, and E. Förster
Focal aberrations of large-aperture HOPG von-Hamos x-ray spectrometers
J. Instrum., 7 :P09015 (September 2012)
Abstract:
Focal aberrations of large-aperture highly oriented pyrolytic graphite (HOPG) crystals in von-Hàmos geometry are investigated by experimental and computational methods. A mosaic HOPG crystal film of 100 μm thickness diffracts 8 keV x-rays. This thickness is smaller than the absorption depth of the symmetric 004-reflection, which amounts to 257 μm. Cylindrically bent crystals with 110 mm radius of curvature and up to 100 mm collection width produce a X-shaped halo around the focus. This feature vanishes when the collection aperture is reduced, but axial spectral profiles show that the resolution is not affected. X-ray topography reveals significant inhomogeneous crystallite domains of 2 ± 1 mm diameter along the entire crystal. Rocking curves shift by about ±20 arcmin between domains, while their full width at half-maximum varies between 30 and 50 arcmin. These inhomogeneities are not imprinted at the focal spot, since the monochromatically reflecting area of the crystal is large compared to inhomogeneities. Ray-tracing calculations using a Monte-Carlo-based algorithm developed for mosaic crystals reproduce the X-shaped halo in the focal plane, stemming from the mosaic defocussing in the non-dispersive direction in combination with large apertures. The best achievable resolution is found by analyzing a diversity of rocking curve widths, source sizes and crystal thicknesses for 8 keV x-rays to be ΔE/E ~ 10^(−4). Finally a general analytic expression for the shape of the aberration is derived.
C. Rödel, D. an der Brügge, J. Bierbach, M. Yeung, T. Hahn, B. Dromey, S. Herzer, S. Fuchs, A. Pour, E. Eckner, M. Behmke, M. Cerchez, O. Jäckel, D. Hemmers, T. Toncian, M.C. Kaluza, A. Belyanin, G. Pretzler, O. Willi, A. Pukhov, M. Zepf, and G.G. Paulus
Harmonic Generation from Relativistic Plasma Surfaces in Ultrasteep Plasma Density Gradients
Phys. Rev. Lett., 109 :125002 (September 2012)
Abstract:
Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L_p/λ < 1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L_p → 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10^-4 – 10^-6 of the laser pulse energy for photon energies ranging from 20 – 40 eV, with the best results being obtained for an intermediate density scale length.