Referierte Publikationen


M. Kienel, A. Klenke, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann
Energy scaling of femtosecond amplifiers using actively controlled divided-pulse amplification
Opt. Lett., 39 :1049 (February 2014)
Divided-pulse amplification is a promising method for the energy scaling of femtosecond laser amplifiers, where pulses are temporally split prior to amplification and coherently recombined afterwards. We present a method that uses an actively stabilized setup with separated stages for splitting and combining. The additional degrees of freedom can be employed to mitigate the limitations originating from saturation of the amplifier that cannot be compensated in passive double-pass configurations using just one common stage for pulse splitting and combining. In a first proof-of-principle experiment, actively controlled divided pulses are applied in a fiber chirped-pulse amplification system resulting in combined and compressed pulses with an energy of 1.25 mJ and a peak power of 2.9 GW.
J. Seres, E. Seres, B. Landgraf, B. Ecker, B. Aurand, T. Kuehl, and C. Spielmann
High-harmonic generation and parametric amplification in the soft X-rays from extended electron trajectories
Sci. Rep., 4 :4234 (February 2014)
We report, for the first time, the generation of high-order harmonics in a spectral range between 200 eV and 1 keV with an unusual spectral property: only every 4th (4i + 1, i∈ℵ) harmonic line appears, whereas the usual high-harmonic spectra consist of every odd (2i + 1) harmonic. We attribute this unique property to the quantum path interference of two extended electron trajectories that experience multiple re-scattering. In the well-established theory, electrons emitted via tunnel ionisation are accelerated by a laser field, return to the ion and recombine. The acceleration typically lasts for less than one optical cycle, and the electrons radiate in the extreme ultraviolet range at recombination. In contrast, for extended trajectories, electrons are accelerated over two or more optical cycles. Here, we demonstrate that two sets of trajectories dominate and provide substantial contributions to the generated soft X-ray radiation because they fulfil the resonance condition for X-ray parametric amplification.
Z. W. Wu, A. Surzhykov, and S. Fritzsche
Hyperfine-induced modifications to the angular distribution of the Kα1x-ray emission
Phys. Rev. A, 89 :022513 (February 2014)
The angular distribution of the Kα_1 (1s2p_3/2^1,3P_1,2→1s^21S_0) x-ray emission following the radiative electron capture into initially hydrogenlike ions with nonzero nuclear spin has been studied within the density matrix theory and the multiconfiguration Dirac-Fock method. Emphasis is placed especially upon the hyperfine interaction and how this interaction of the magnetic moment of the nucleus with those of the electrons affects the angular properties of the Kα_1 radiation. Calculations were performed for selected isotopes of heliumlike Sn48+, Xe52+, and Tl79+ ions. A quite sizable contribution of the hyperfine interaction upon the Kα_1 angular emission is found for isotopes with nuclear spin I = 1/2, while its effect is suppressed for (most) isotopes with nuclear spin I > 1/2. We therefore suggest that accurate measurements of the Kα_1 angular distribution at ion storage rings can be utilized as a tool for determining the nuclear parameters of rare stable and radioactive isotopes with I ≥ 1/2.
P. Hansinger, G. Maleshkov, N. Gorunski, N. Dimitrov, A. Dreischuh, and G.G. Paulus
Interaction between one-dimensional dark spatial solitons and semi-infinite dark stripes
Opt. Commun., 313 :106 (February 2014)
In this work we numerically study the evolution and interaction of one-dimensional (1-D) dark spatial solitons and semi-infinite dark stripes (SIDSs) in a local self-defocusing Kerr nonlinear medium. The experimental results in the linear regime of propagation confirm that the SIDS bending and fusion with the infinite 1-D dark beam modeled for negative nonlinearity is due to the opposite phase semi-helicities of SID beam ends. Results for several interaction scenaria show that bending ends of the semi-infinite dark stripes splice to the 1-D dark beam to form structures resembling waveguide couplers/branchers. Well pronounced modulational stability of 1-D dark spatial solitons under strong symmetric background beam modulation from decaying SIDSs is predicted.
D. Seipt, and B. Kämpfer
Laser-assisted Compton scattering of x-ray photons
Phys. Rev. A, 89 :023433 (February 2014)
The Compton scattering of x-ray photons, assisted by a short intense optical laser pulse, is discussed. The differential scattering cross section reveals the interesting feature that the main Klein-Nishina line is accompanied by a series of side lines forming a broad plateau where up to O(10^(3)) laser photons participate simultaneously in a single scattering event. An analytic formula for the width of the plateau is given. Due to the nonlinear mixing of x-ray and laser photons a frequency-dependent rotation of the polarization of the final-state x-ray photons relative to the scattering plane emerges. A consistent description of the scattering process with short laser pulses requires to work with x-ray pulses. An experimental investigation can be accomplished, e.g., at LCLS or the European XFEL, in the near future.
X. Xie, S. Roither, M. Schöffler, H. Xu, S. Bubin, E. Lötstedt, S. Erattuphuza, A. Iwasaki, D. Kartashov, K. Varga, G.G. Paulus, A. Baltuska, K. Yamanouchi, and M. Kitzler
Role of proton dynamics in efficient photoionization of hydrocarbon molecules
Phys. Rev. A, 89 :023429 (February 2014)
We experimentally investigate the ionization mechanism behind the formation of remarkably high charge states observed in the laser-pulse-induced fragmentation of different hydrocarbon molecules by Roither et al. [Phys. Rev. Lett. 106, 163001 (2011)], who suggested enhanced ionization occurring at multiple C-H bonds as the underlying ionization mechanism. Using multiparticle coincidence momentum imaging we measure the yield of multiply charged fragmenting ethylene and acetylene molecules at several intensities and pulse durations ranging from the few-cycle regime to 25 fs. We observe, at constant intensity, a strong increase of the proton energy with increasing laser pulse duration. It is shown that this is caused by a strong increase in the yield of highly charged parent molecular ions with pulse duration. Based on experimental evidence we explain this increase by the necessary population of precursor states in the parent ion that feature fast C-H stretch dynamics to the critical internuclear distance, where efficient ionization via enhanced ionization takes place. For increasing pulse duration these precursor ionic states are more efficiently populated, which leads in turn to a higher enhanced-ionization probability for longer pulses. Our work provides experimental evidence for the existence of a multiple-bond version of enhanced ionization in polyatomic molecules.
S. Fritzsche
The Feynman tools for quantum information processing: Design and implementation
Comput. Phys. Commun., 185 :1697 (February 2014)
The Feynman tools have been re-designed with the goal to establish and implement a high-level (computer) language that is capable to deal with the physics of finite, n -qubit systems, from frequently required computations to mathematically advanced tasks in quantum information processing. In particular, emphasis has been placed to introduce a small but powerful set of keystring-driven commands in order to support both, symbolic and numerical computations. Though the current design is implemented again within the framework of Maple, it is general and flexible enough to be utilized and combined with other languages and computational environments. The present implementation facilitates a large number of computational tasks, including the definition, manipulation and parametrization of quantum states, the evaluation of quantum measures and quantum operations, the evolution of quantum noise in discrete models, quantum measurements and state estimation, and several others. The design is based on a few high-level commands, with a syntax close to the mathematical notation and its use in the literature, and which can be generalized quite readily in order to solve computational tasks at even higher degree of complexity. In this work, I present and discuss the (re-design of the) Feynman tools and make major parts of the code available for public use. Moreover, a few selected examples are shown and demonstrate possible application of this toolbox. The Feynman tools are provided as Maple library and can hence be used on all platforms on which this computer-algebra system is accessible.
B. Aurand, B. Elkin, L.-O. Heim, B. Lommel, B. Kindler, M. Tomut, C. Rödel, S. Kuschel, O. Jäckel, and T. Kühl
Ultra-thin polymer foils for laser-ion acceleration
J. Radioanal. Nucl. Chem., 299 :965 (February 2014)
We report on the development of new materials for laser-ion acceleration applicable for the advanced mechanism of radiation-pressure-acceleration. These targets are ultra-thin with thicknesses of just a few nm. For several years, diamond-like carbon foils in this thickness range can be produced. An alternative material containing more than one ion-species has the potential to further improve the acceleration mechanism. The fabrication and characterization of self-supporting polymer-based targets will be described in this paper. Furthermore, we show the significant influence on a radiation-pressure induced acceleration process by experimental data.
M. Huttula, S.-M. Huttula, S. Fritzsche, P. Lablanquie, F. Penent, J. Palaudoux, and L. Andric
Core-valence double photoionization of atomic mercury
Phys. Rev. A, 89 :013411 (January 2014)
Multielectron coincidence spectroscopy has been used to study core 4f valence 5d, 6s double photoionization of atomic mercury. Multiconfiguration Dirac–Fock calculations were performed to calculate the energies and to estimate the single-photon intensities of the 4f^13(5d^96s^2 + 5d^106s^1) double-ionized states of atomic mercury. Reasonable agreement between the measured and simulated spectra is found if the relaxation effects of the bound-state density is taken into account in the computation of the photoionization amplitudes.
M. J. Prandolini, R. Riedel, M. Schulz, A. Hage, H. Höppner, and F. Tavella
Design considerations for a high power, ultrabroadband optical parametricchirped-pulse amplifier
Opt. Express, 22 :1594 (January 2014)
A conceptual design of a high power, ultrabroadband optical parametric chirped-pulse amplifier(OPCPA) was carried out comparing nonlinear crystals (LBO and BBO) for 810 nm centered, sub-7.0 fspulses with energies above 1 mJ. These amplifiers are only possible with a parallel development ofkilowatt-level OPCPA-pump amplifiers. It is therefore important to know good strategies to use theavailable OPCPA-pump energy efficiently. Numerical simulations, including self- and cross-phasemodulation, were used to investigate the critical parameters to achieve sufficient spectral andspatial quality. At high output powers, thermal absorption in the nonlinear crystals starts todegrade the output beam quality. Strategies to minimize thermal effects and limits to the maximumaverage power are discussed.
H. Y. Wang, C. Lin, B. Liu, Z. M. Sheng, H. Y. Lu, W. J. Ma, J. H. Bin, J. Schreiber, X. T. He, J. E. Chen, M. Zepf, and X. Yan
Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction
Phys. Rev. E, 89 :013107 (January 2014)
A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100 MeV/u quasimonoenergetic Fe^24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×10^21W/cm2.
C. Gaida, F. Stutzki, F. Jansen, H.-J. Otto, T. Eidam, C. Jauregui, O. d. Vries, J. Limpert, and A. Tünnermann
Triple-clad large-pitch fibers for compact high-power pulsed fiber laser systems
Opt. Lett., 39 :209 (January 2014)
We present a novel ytterbium (Yb)-doped large-pitch fiber design with significantly increased pump absorption and higher energy storage/gain per unit length, which enables high-peak-power fiber laser systems with smaller footprints. Up to now index matching between core and surrounding material in microstructured fibers was achieved by co-doping the active core region with fluorine. Here we carry out the index matching by passively doping the cladding with germanium, thus raising its index of refraction. Hence, the fluorine in the core can be omitted, which leads to an effective increase of the core doping concentration, while detrimental effects such as photo-darkening and lifetime quenching are avoided by maintaining the bulk Yb concentration. Experiments and simulations show that a gain higher than 50  dB/m and an output average power higher than 100 W with excellent beam quality are feasible even with a fiber length of only 40 cm.


S. Kar, K. F. Kakolee, M. Cerchez, D. Doria, A. Macchi, P. McKenna, D. Neely, J. Osterholz, K. Quinn, B. Ramakrishna, G. Sarri, O. Willi, X. H. Yuan, M. Zepf, and M. Borghesi
Experimental investigation of hole boring and light sail regimes of RPA by varying laser and target parameters
Plasma. Phys. Contr. F., 55 :124030 (December 2013)
Temporal evolution of plasma jets from micrometre-scale thick foils following the interaction of intense (3 × 10 20 W cm^−2 ) laser pulses is studied systematically by time resolved optical interferometry. The fluid velocity in the plasma jets is determined by comparing the data with 2D hydrodynamic simulation, which agrees with the expected hole-boring (HB) velocity due to the laser radiation pressure. The homogeneity of the plasma density across the jets has been found to be improved substantially when irradiating the laser at circular polarization compared to linear polarization. While overdense plasma jets were formed efficiently for micrometre thick targets, decreasing the target areal density and/or increasing the irradiance on the target have provided indication of transition from the ‘HB’ to the ‘light sail (LS)’ regime of RPA, characterized by the appearance of narrow-band spectral features at several MeV/nucleon in proton and carbon spectra.
S. Demmler, J. Rothhardt, S. Hädrich, M. Krebs, A. Hage, J. Limpert, and A. Tünnermann
Generation of high photon flux coherent soft x-ray radiation with few-cycle pulses
Opt. Lett., 38 :5051 (December 2013)
We present a tabletop source of coherent soft x-ray radiation with high-photon flux. Two-cycle pulses delivered by a fiber-laser-pumped optical parametric chirped-pulse amplifier operating at 180 kHz repetition rate are upconverted via high harmonic generation in neon to photon energies beyond 200 eV. A maximum photon flux of 1.3 x 10^8  photons/s is achieved within a 1% bandwidth at 125 eV photon energy. This corresponds to a conversion efficiency of ~10^−9, which can be reached due to a gas jet simultaneously providing a high target density and phase matching. Further scaling potential toward higher photon flux as well as higher photon energies are discussed.
G. Sarri, W. Schumaker, A. D. Piazza, K. Poder, J. M. Cole, M. Vargas, D. Doria, S. Kushel, B. Dromey, G. Grittani, L. Gizzi, M. E. Dieckmann, A. Green, V. Chvykov, A. Maksimchuk, V. Yanovsky, Z. H. He, B. X. Hou, J. A. Nees, S. Kar, Z. Najmudin, A. G. R. Thomas, C. H. Keitel, K. Krushelnick, and M. Zepf
Laser-driven generation of collimated ultra-relativistic positron beams
Plasma. Phys. Contr. F., 55 :124017 (December 2013)
We report on recent experimental results concerning the generation of collimated (divergence of the order of a few mrad) ultra-relativistic positron beams using a fully optical system. The positron beams are generated exploiting a quantum-electrodynamic cascade initiated by the propagation of a laser-accelerated, ultra-relativistic electron beam through high- Z solid targets. As long as the target thickness is comparable to or smaller than the radiation length of the material, the divergence of the escaping positron beam is of the order of the inverse of its Lorentz factor. For thicker solid targets the divergence is seen to gradually increase, due to the increased number of fundamental steps in the cascade, but it is still kept of the order of few tens of mrad, depending on the spectral components in the beam. This high degree of collimation will be fundamental for further injection into plasma-wakefield afterburners.
A. Surzhykov, V. A. Yerokhin, T. Jahrsetz, P. Amaro, T. Stöhlker, and S. Fritzsche
Polarization correlations in the elastic Rayleigh scattering of photons by hydrogenlike ions
Phys. Rev. A, 88 :062515 (December 2013)
The (elastic) Rayleigh scattering of hard x rays by hydrogenlike ions has been investigated within the framework of second-order perturbation theory and Dirac's relativistic equation. The focus of this study was, in particular, on two questions: (i) How is the polarization of scattered photons affected if the incident light is itself (linearly) polarized, and (ii) how do the nondipole contributions to the electron-photon interaction and the relativistic contraction of the wave functions influence such a polarization transfer? Detailed calculations were performed for Ne9+, Xe53+, and U91+ targets and for photon energies up to ten times the 1s ionization threshold of the ions. From the comparison of these fully relativistic computations with the (nonrelativistic) dipole approximation we conclude that relativistic and higher-multipole effects often lead to a significant or even complete depolarization for heavy targets and at high photon energies.
D. Kraus, J. Vorberger, D. O. Gericke, V. Bagnoud, A. Blazevic, W. Cayzac, A. Frank, G. Gregori, A. Ortner, A. Otten, F. Roth, G. Schaumann, D. Schumacher, K. Siegenthaler, F. Wagner, K. Wünsch, and M. Roth
Probing the Complex Ion Structure in Liquid Carbon at 100 GPa
Phys. Rev. Lett., 111 :255501 (December 2013)
We present the first direct experimental test of the complex ion structure in liquid carbon at pressures around 100 GPa, using spectrally resolved x-ray scattering from shock-compressed graphite samples. Our results confirm the structure predicted by ab initio quantum simulations and demonstrate the importance of chemical bonds at extreme conditions similar to those found in the interiors of giant planets. The evidence presented here thus provides a firmer ground for modeling the evolution and current structure of carbon-bearing icy giants like Neptune, Uranus, and a number of extrasolar planets.
M. Kienel, A. Klenke, T. Eidam, M. Baumgartl, C. Jauregui, J. Limpert, and A. Tünnermann
Analysis of passively combined divided-pulse amplification as an energy-scaling concept
Opt. Express, 21 :29031 (November 2013)
The energy scaling of ultrashort-pulse systems employing simultaneously the techniques of chirped-pulse amplification and passively combined divided-pulse amplification is analyzed both experimentally and numerically. The maximum achievable efficiency is investigated and fundamental limitations originating from gain saturation, self-phase modulation and depolarization are discussed. A solution to these limitations could be an active stabilization scheme, which would allow for the operation of every single fiber amplifier at higher pulse energies.
A. Gopal, P. Singh, S. Herzer, A. Reinhard, A. Schmidt, U. Dillner, T. May, H.-G. Meyer, W. Ziegler, and G.G. Paulus
Characterization of 700  μJ T rays generated during high-power laser solid interaction
Opt. Lett., 38 :4705 (November 2013)
Laser-produced solid density plasmas are well-known as table-top sources of electromagnetic radiation. Recent studies have shown that energetic broadband terahertz pulses (T rays) can also be generated from laser-driven compact ion accelerators. Here we report the measurement of record-breaking T-Ray pulses with energies no less than 0.7 mJ. The terahertz spectrum has been characterized for frequencies ranging from 0.1–133  THz. The dependence of T-Ray yield on incident laser energy is linear and shows no tendencies of saturation. The noncollinear emission pattern and the high yield reveal that the T rays are generated by the transient field at the rear surface of the solid target.
W. Chen, G. Vorobyev, D. Guo, P.-M. Hillenbrand, F. Herfurth, S. Hagmann, U. Spillmann, S. Trotsenko, A. Gumberidze, and T. Stöhlker
Charge transfer of slow highly charged xenon ions in collisions with magnesium atoms
Phys. Rev. A, 88 :052703 (November 2013)
We report an experimental study of the charge-transfer process in collisions of Xe^q+ ions (16≤q≤20) with magnesium atoms at an energy of 5.5q keV. With charge-selective and time-coincidence techniques, we separated the pure capture and capture accompanied by transfer-ionization processes. The experimental data indicate that the magnesium target is around two times more likely to lose two electrons than one in the collision. This finding is very different compared to the calculation based on the extended classic over-the-barrier model. The Xe^q+-Mg collision also behaves very differently from “traditional” collisions between highly charged ions and noble gases. We suggest a one-step dielectronic mechanism for the capture process. The data also show that autoionization dominates the relaxation process after the capture, and fluctuation of the autoionization fraction versus the projectile charge state indicates that for the relaxation processes, the projectile core structure plays a more important role than the detailed characteristics of the projectile states where the target electrons are initially captured.
A. Klenke, M. Kienel, T. Eidam, S. Hädrich, J. Limpert, and A. Tünnermann
Divided-pulse nonlinear compression
Opt. Lett., 38 :4593 (November 2013)
We report on the nonlinear pulse compression of temporally divided pulses, which is presented in a proof-of-principle experiment. A single 320 fs pulse is divided into four replicas, spectrally broadened in a solid-core fiber, and subsequently recombined. This approach makes it possible to reduce the nonlinearities in the fiber and therefore to use total input peak power of about 13.3 MW, which is more than three times higher than the self-focusing threshold. Finally, the combined output pulse could be compressed to sub-100 fs pulse duration. This general and universal approach holds promise for overcoming fundamental limitations of the pulse peak power that lead to destruction of the fiber or ionization limitations in high-energy hollow-core compression.
J. Körner, J. Hein, H. Liebetrau, R. Seifert, D. Klöpfel, M. Kahle, M. Loeser, M. Siebold, U. Schramm, and M.C. Kaluza
Efficient burst mode amplifier for ultra-short pulses based on cryogenically cooled Yb3+:CaF2
Opt. Express, 21 :29006 (November 2013)
We present a novel approach for the amplification of high peak power femtosecond laser pulses at a high repetition rate. This approach is based on an all-diode pumped burst mode laser scheme. In this scheme, pulse bursts with a total duration between 1 and 2 ms are be generated and amplified. They contain 50 to 2000 individual pulses equally spaced in time. The individual pulses have an initial duration of 350 fs and are stretched to 50 ps prior to amplification. The amplifier stage is based on Yb3+:CaF2 cooled to 100 K. In this amplifier, a total output energy in excess of 600 mJ per burst at a repetition rate of 10 Hz is demonstrated. For lower repetition rates the total output energy per burst can be scaled up to 915 mJ using a longer pump duration. This corresponds to an efficiency as high as 25% of extracted energy from absorbed pump energy. This is the highest efficiency, which has so far been demonstrated for a pulsed Yb3+:CaF2 amplifier.
M. B. Schwab, A. Sävert, O. Jäckel, J. Polz, M. Schnell, T. Rinck, L. Veisz, M. Möller, P. Hansinger, G.G. Paulus, and M.C. Kaluza
Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions
Appl. Phys. Lett., 103 :191118 (November 2013)
The development of a few-cycle optical probe-pulse for the investigation of laser-plasma interactions driven by a Ti:sapphire, 30 Terawatt (TW) laser system is described. The probe is seeded by a fraction of the driving laser's energy and is spectrally broadened via self-phase modulation in a hollow core fiber filled with a rare gas, then temporally compressed to a few optical cycles via chirped mirrors. Shadowgrams of the laser-driven plasma wave created in relativistic electron acceleration experiments are presented with few-fs temporal resolution, which is shown to be independent of post-interaction spectral filtering of the probe-beam.
P. Kienle, F. Bosch, P. Bühler, T. Faestermann, Y. Litvinov, N. Winckler, M. Sanjari, D. Shubina, D. Atanasov, H. Geissel, V. Ivanova, X. Yan, D. Boutin, C. Brandau, I. Dillmann, Ch. Dimopoulou, R. Hess, P.-M. Hillebrand, T. Izumikawa, R. Knöbel, J. Kurcewicz, N. Kuzminchuk, M. Lestinsky, S. Litvinov, X. Ma, L. Maier, M. Mazzocco, I. Mukha, C. Nociforo, F. Nolden, Ch. Scheidenberger, U. Spillmann, M. Steck, T. Stöhlker, B. Sun, F. Suzaki, T. Suzuki, S. Torilov, M. Trassinelli, X. Tu, M. Wang, H. Weick, D. F. A. Winters, N. Winters, P. Woods, T. Yamaguchi, G. Zhang, and T. Ohtsubo
High-resolution measurement of the time-modulated orbital electron capture and of the β+ decay of hydrogen-like 142Pm^60+ ions
Phys. Lett. B, 726 :638 (November 2013)
The periodic time modulations, found recently in the two-body orbital electron capture (EC) decay of both, hydrogen-like 140Pr58+ and 142Pm60+ ions, with periods near to 7 s7 s and amplitudes of about 20%, were re-investigated for the case of 142Pm60+ by using a 245 MHz resonator cavity with a much improved sensitivity and time resolution. We observed that the exponential EC decay is modulated with a period T=7.11(11) s, in accordance with a modulation period T=7.12(11) s as obtained from simultaneous observations with a capacitive pick-up, employed also in the previous experiments. The modulation amplitudes amount to a_R=0.107(24) and a_P=0.134(27) for the 245 MHz resonator and the capacitive pick-up, respectively. These new results corroborate for both detectors exactly our previous findings of modulation periods near to 7 s, though with distinctly smaller amplitudes. Also the three-body β+ decays have been analyzed. For a supposed modulation period near to 7 s we found an amplitude a=0.027(27), compatible with a=0a=0 and in agreement with the preliminary result a=0.030(30) of our previous experiment. These observations could point at weak interaction as origin of the observed 7 s-modulation of the EC decay. Furthermore, the data suggest that interference terms occur in the two-body EC decay, although the neutrinos are not directly observed.
R. Riedel, M. Schulz, M. J. Prandolini, A. Hage, H. Höppner, T. Gottschall, J. Limpert, M. Drescher, and F. Tavella
Long-term stabilization of high power optical parametric chirped-pulse amplifiers
Opt. Express, 21 :28987 (November 2013)
The long-term stability of optical parametric chirped-pulse amplifiers is hindered by thermal path length drifts affecting the temporal pump-to-signal overlap. A kilowatt-pumped burst amplifier is presented delivering broadband 1.4 mJ pulses with a spectral bandwidth supporting sub-7 fs pulse duration. Active temporal overlap control can be achieved by feedback of optical timing signals from cross-correlation or spectral measurements. Using a balanced optical cross-correlator, we achieve a pump-to-signal synchronization with a residual jitter of only (46 ± 2) fs rms. Additionally, we propose passive pump-to-signal stabilization with an intrinsic jitter of (7.0 ± 0.5) fs rms using white-light continuum generation.