C. Brabetz,
S. Busold,
T. Cowan,
O. Deppert,
D. Jahn,
O. Kester,
M. Roth,
D. Schumacher,
and V. Bagnoud
Laser-driven ion acceleration with hollow laser beams
Phys. Plasmas, 22 :013105 (January 2015)
Laser-driven ion acceleration with hollow laser beams
Phys. Plasmas, 22 :013105 (January 2015)
Abstract:
The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10^18 W cm^−2 to 10^20 W cm^−2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.