Referierte Publikationen

2014

S. Breitkopf, T. Eidam, A. Klenke, L. v. Grafenstein, H. Carstens, S. Holzberger, E. Fill, T. Schreiber, F. Krausz, A. Tünnermann, I. Pupeza, and J. Limpert
A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities
Light Sci. Appl., 3 :e211 (October 2014)
Abstract:
Since the advent of femtosecond lasers, performance improvements have constantly impacted on existing applications and enabled novel applications. However, one performance feature bearing the potential of a quantum leap for high-field applications is still not available: the simultaneous emission of extremely high peak and average powers. Emerging applications such as laser particle acceleration require exactly this performance regime and, therefore, challenge laser technology at large. On the one hand, canonical bulk systems can provide pulse peak powers in the multi-terawatt to petawatt range, while on the other hand, advanced solid-state-laser concepts such as the thin disk, slab or fibre are well known for their high efficiency and their ability to emit high average powers in the kilowatt range with excellent beam quality. In this contribution, a compact laser system capable of simultaneously providing high peak and average powers with high wall-plug efficiency is proposed and analysed. The concept is based on the temporal coherent combination (pulse stacking) of a pulse train emitted from a high-repetition-rate femtosecond laser system in a passive enhancement cavity. Thus, the pulse energy is increased at the cost of the repetition rate while almost preserving the average power. The concept relies on a fast switching element for dumping the enhanced pulse out of the cavity. The switch constitutes the key challenge of our proposal. Addressing this challenge could, for the first time, allow the highly efficient dumping of joule-class pulses at megawatt average power levels and lead to unprecedented laser parameters.
F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann
Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems
Optica, 1 :233 (October 2014)
Abstract:
Fiber lasers are a highly regarded solid-state laser concept due to their high efficiency, beam quality, and easy thermal management. Unfortunately, the performance of high-power fiber-laser systems is challenged by the onset of detrimental nonlinear effects. Their impact can be reduced dramatically by employing fibers with larger mode-field areas. Even though this is an efficient way to mitigate nonlinear effects, maintaining effective single-mode operation, and with it high beam quality, becomes increasingly difficult as the core is enlarged. In this paper the demands and challenges for the design of a very-large-mode-area (VLMA) fiber are discussed. The benefits of using higher-order mode delocalization as the working principle of active double-clad VLMA fibers are described. Finally, a new low-symmetry large-pitch fiber, which is expected to improve the performance of state-of-the-art fiber-laser systems by increasing higher-order mode delocalization, is proposed and thoroughly analyzed.
P.-M. Hillenbrand, S. Hagmann, A. B. Voitkiv, B. Najjari, D. Banaś, K.-H. Blumenhagen, C. Brandau, W. Chen, E. De Filippo, A. Gumberidze, D. L. Guo, C. Kozhuharov, M. Lestinsky, Yu. A. Litvinov, A. Müller, H. Rothard, S. Schippers, M. S. Schöffler, U. Spillmann, S. Trotsenko, X. L. Zhu, and T. Stöhlker
Electron-loss-to-continuum cusp in U⁸⁸⁺ + N₂ collisions
Phys. Rev. A, 90 :042713 (October 2014)
Abstract:
The electron loss to the continuum has been studied for the collision system U88+ + N2→U89+ + [N2]∗ + e− at the low-relativistic projectile energy of 90 MeV/u. Using a magnetic electron spectrometer, the energy distribution of cusp electrons emitted at an angle of 0∘ with respect to the projectile beam was measured in coincidence with the up-charged projectile. At the experimental collision energy ionization of the berylliumlike U88+ projectile proceeds predominantly from the L shell, but a contribution from the K shell could also be identified experimentally. The measurement is shown to be in accordance with fully relativistic Dirac calculations applying first-order perturbation theory. Furthermore, the underlying continuum electron distribution in the projectile frame is illustrated.
W. Becker, S. P. Goreslavski, D. B. Milošević, and G.G. Paulus
Low-energy electron rescattering in laser-induced ionization
J. Phys. B, 47 :204022 (October 2014)
Abstract:
The low-energy structure (LES) in the energy spectrum of above-threshold ionization of rare-gas atoms is reinvestigated from three different points of view. First, the role of forward rescattering in the completely classical simple-man model (SMM) is considered. Then, the corresponding classical electronic trajectories are retrieved in the quantum-mechanical ionization amplitude derived in the strong-field approximation augmented to allow for rescattering. Third, classical trajectories in the presence of both the laser field and the Coulomb field are scrutinized in order to see how they are related to the LES. It is concluded that the LES is already rooted in the SMM. The Coulomb field enhances the structure so that it can successfully compete with other contributions and become visible in the total spectrum.
Y. S. Kozhedub, V. M. Shabaev, I. I. Tupitsyn, A. Gumberidze, S. Hagmann, G. Plunien, and T. Stöhlker
Relativistic calculations of x-ray emission following a Xe-Bi 83+ collision
Phys. Rev. A, 90 :042709 (October 2014)
Abstract:
We study the x-ray emission following the collision of a Bi83+ ion with a neutral Xe atom at the projectile energy 70 MeV/u. The collisional and post-collisional processes are treated separately. The probabilities of various many-electron processes at the collision are calculated within a relativistic independent electron model using the coupled-channel approach with atomiclike Dirac-Fock-Sturm orbitals. The analysis of the post-collisional processes resulting in the x-ray emission is based on the fluorescence yields, the radiation, and Auger decay rates, and allows one to derive intensities of the x-ray emission and compare them with experimental data. A reasonable agreement between the theoretical results and the recent experimental data is observed. The role of the relativistic effects is investigated.
H. Liebetrau, M. Hornung, A. Seidel, M. Hellwing, A. Kessler, S. Keppler, F. Schorcht, J. Hein, and M.C. Kaluza
Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm
Opt. Express, 22 :24776 (October 2014)
Abstract:
We present the results from a new frontend within a double-chirped pulse amplification architecture (DCPA) utilizing crossed-polarized wave generation (XPW) for generating ultra-high contrast, 150 μJ-level, femtosecond seed pulses at 1030 nm. These pulses are used in the high energy class diode-pumped laser system Polaris at the Helmholtz Institute in Jena. Within this frontend, laser pulses from a 75 MHz oscillator-pulse train are extracted at a repetition rate of 1 Hz, temporally stretched, amplified and then recompressed reaching a pulse energy of 2 mJ, a bandwidth of 12 nm and 112 fs pulse duration at a center wavelength of 1030 nm. These pulses are temporally filtered via XPW in a holographic-cut BaF2 crystal, resulting in 150 μJ pulse energy with an efficiency of 13 %. Due to this non-linear filtering, the relative intensity of the amplified spontaneous emission preceding the main pulse is suppressed to 2×10^−13. This is, to the best of our knowledge, the lowest value achieved in a high peak power laser system operating at 1030 nm center wavelength.
J. Rothhardt, S. Hädrich, A. Klenke, S. Demmler, A. Hoffmann, T. Gotschall, T. Eidam, M. Krebs, J. Limpert, and A. Tünnermann
53 W average power few-cycle fiber laser system generating soft x rays up to the water window
Opt. Lett., 39 :5224 (September 2014)
Abstract:
We report on a few-cycle laser system delivering sub-8-fs pulses with 353 µJ pulse energy and 25 GW of peak power at up to 150 kHz repetition rate. The corresponding average output power is as high as 53 W, which represents the highest average power obtained from any few-cycle laser architecture so far. The combination of both high average and high peak power provides unique opportunities for applications. We demonstrate high harmonic generation up to the water window and record-high photon flux in the soft x-ray spectral region. This tabletop source of high-photon flux soft x rays will, for example, enable coherent diffractive imaging with sub-10-nm resolution in the near future.
U. Zastrau, L. Fletcher, E. Förster, E. Galtier, E. Gamboa, S. Glenzer, P. Heimann, H. Marschner, B. Nagler, A. Schropp, O. Wehrhan, and H. Lee
Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser
Rev. Sci. Instrum., 85 :093106 (September 2014)
Abstract:
We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ΔE/E = 1.1 × 10^−4 and wave-number resolution of Δk/k = 3 × 10^−3, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5 μm agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.
A. Alejo, S. Kar, H. Ahmed, A. G. Krygier, D. Doria, R. Clarke, J. Fernandez, R. R. Freeman, J. Fuchs, A. Green, J. S. Green, D. Jung, A. Kleinschmidt, C. L. S. Lewis, J. T. Morrison, Z. Najmudin, H. Nakamura, G. Nersisyan, P. Norreys, M. Notley, M. Oliver, M. Roth, J. A. Ruiz, L. Vassura, M. Zepf, and M. Borghesi
Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers
Rev. Sci. Instrum., 85 :093303 (September 2014)
Abstract:
A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C^(6+), O^(8+), etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.
S. Hädrich, A. Klenke, J. Rothhardt, M. Krebs, A. Hoffmann, O. Pronin, V. Pervak, J. Limpert, and A. Tünnermann
High photon flux table-top coherent extreme-ultraviolet source
Nat. Photonics, 8 :779 (September 2014)
Abstract:
High harmonic generation (HHG) enables extreme-ultraviolet radiation with table-top set-ups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, for example, to avoid space charge effects in photoelectron spectroscopy. To date, this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV – 40 eV) of strong harmonics, each containing more than 1 × 10^12 photons s–1, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 μW (3 × 10^13 photons s–1). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.
U. Zastrau, and E. Förster
Integrated reflectivity measurements of hydrogen phthalate crystals for high-resolution soft x-ray spectroscopy
J. Instrum., 9 :P09008 (September 2014)
Abstract:
The integrated x-ray reflectivity of Potassium Hydrogen Phthalate (KAP) and Rubidium Hydrogen Phthalate (RAP) crystals is studied at a photon energy of (1740±14) eV using a double-crystal setup. The absolute measured reflectivities are in < 5% agreement with the values predicted by the dynamic diffraction theory for perfect crystals when absorption is included. Within 4% experimental error margins, specimen that were exposed to ambient conditions over many years show identical reflectivity as specimen that were cleaved just before the measurement. No differences are observed between cleaving off a 10 μm surface layer and splitting the entire crystal bulk of 2 mm thickness. We conclude that at 1.7 keV photon energy the penetration depth of ~ 1 μm is large compared to a potentially deteriorated surface layer of a few 10 nm.
F. Karbstein, A. Peters, and M. Wagner
LambdaMSbar (nf=2) from a momentum space analysis of the quark-antiquark static potential
J. High Energ. Phys., 09 :114 (September 2014)
Abstract:
We determine LambdaMSbar (nf=2) by fitting perturbative expressions for the quark-antiquark static potential to lattice results for QCD with nf=2 dynamical quark flavors. To this end we use the perturbative static potential at the presently best known accuracy, i.e. up to O(α_s^4), in momentum space. The lattice potential is computed on a fine lattice with a≈0.042fm in position space. To allow for a comparison and matching of both results, the lattice potential is transformed into momentum space by means of a discrete Fourier transform. The value of LambdaMSbar (nf=2) is extracted in momentum space. All sources of statistical and systematic errors are discussed. The uncertainty in the value of LambdaMSbar (nf=2) is found to be smaller than that obtained in a recent position space analysis of the static potential based on the same lattice data.
S. Tashenov, D. Banaś, H. Beyer, C. Brandau, S. Fritzsche, A. Gumberidze, S. Hagmann, P.-M. Hillenbrand, H. Jörg, I. Kojouharov, Ch. Kozhuharov, M. Lestinsky, Yu. A. Litvinov, A. V. Maiorova, H. Schaffner, V. M. Shabaev, U. Spillmann, T. Stöhlker, A. Surzhykov, and S. Trotsenko
Observation of Coherence in the Time-Reversed Relativistic Photoelectric Effect
Phys. Rev. Lett., 113 :113001 (September 2014)
Abstract:
The photoelectric effect has been studied in the regime of hard x rays and strong Coulomb fields via its time-reversed process of radiative recombination (RR). In the experiment, the relativistic electrons recombined into the 2p3/2 excited state of hydrogenlike uranium ions, and both the RR x rays and the subsequently emitted characteristic x rays were detected in coincidence. This allowed us to observe the coherence between the magnetic substates in a highly charged ion and to identify the contribution of the spin-orbit interaction to the RR process.
M. Lochmann, R. Jöhren, C. Geppert, Z. Andelkovic, D. Anielski, B. Botermann, M. Bussmann, A. Dax, N. Frömmgen, M. Hammen, V. Hannen, T. Kühl, Y. Litvinov, R. Lopez-Coto, T. Stöhlker, R. Thompson, J. Vollbrecht, A. Volotka, C. Weinheimer, W. Wen, E. Will, D. Winters, R. Sanchez, and W. Nörtershäuser
Observation of the hyperfine transition in lithium-like bismuth 209Bi80+ : Towards a test of QED in strong magnetic fields
Phys. Rev. A, 90 :030501 (September 2014)
Abstract:
We performed a laser spectroscopic determination of the 2s hyperfine splitting (HFS) of Li-like 209Bi80+ and repeated the measurement of the 1s HFS of H-like 209Bi82+. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of ≈0.71c. Pulsed laser excitation of the M1 hyperfine transition was performed in anticollinear and collinear geometry for Bi82+ and Bi80+, respectively, and observed by fluorescence detection. We obtain ΔE(1s)=5086.3(11)meV for Bi82+, different from the literature value, and ΔE(2s)=797.50(18)meV for Bi80+. These values provide experimental evidence that a specific difference between the two splitting energies can be used to test QED calculations in the strongest static magnetic fields available in the laboratory independent of nuclear structure effects. The experimental result is in excellent agreement with the theoretical prediction and confirms the sum of the Dirac term and the relativistic interelectronic-interaction correction at a level of 0.5%, confirming the importance of accounting for the Breit interaction.
J. Limpert, A. Klenke, M. Kienel, S. Breitkopf, T. Eidam, S. Hädrich, C. Jauregui, and A. Tünnermann
Performance Scaling of Ultrafast Laser Systems by Coherent Addition of Femtosecond Pulses
IEEE J. Sel. Top. Quantum Electron., 20 :0901810 (September 2014)
Abstract:
In the last decades, ultrafast lasers and amplifiers have achieved an extraordinary power increase and have enabled a plethora of scientific, medical or industrial applications. However, especially in recent years, it has become more and more challenging to keep up with this pace since intrinsic physical limitations are becoming difficult to avoid. A promising way to get around this problem is the technique of spatially and/or temporally separated amplification and subsequent coherent addition of ultrashort pulses. It turns out that fiber amplifiers are perfect candidates for this concept due to their outstanding average-power capability and their simple single-pass setups, which can be easily parallelized. Herein we provide an overview of the most important experimental implementations of this concept and recent results. We discuss the ability of these approaches to generate laser parameters that, only a few years ago, seemed impossible to achieve.
R. A. Müller, V. A. Yerokhin, and A. Surzhykov
Polarization of atomic bremsstrahlung in coincidence studies
Phys. Rev. A, 90 :032707 (September 2014)
Abstract:
We present a theoretical study of bremsstrahlung produced by high-energy electrons scattered by heavy atomic targets. Considering coincident observation of the emitted photons and the scattered electrons, we pay special attention to the polarization degree and direction of the outgoing light. To investigate these properties of atomic bremsstrahlung, we apply the density matrix approach and solutions of the Dirac equation. Detailed calculations are performed for initial electron energies ranging from 100 to 500 keV and different fixed electron scattering angles. The results of these calculations are compared with predictions obtained under the assumption that the scattered electrons remain unobserved. This comparison reveals that both the degree and the direction of linear polarization of bremsstrahlung are very sensitive to the direction of the scattered electron.
M. Nicolai, A. Sävert, M. Reuter, M. Schnell, J. Polz, O. Jäckel, L. Karsch, M. Schürer, M. Oppelt, J. Pawelke, and M.C. Kaluza
Realizing a laser-driven electron source applicable for radiobiological tumor irradiation
Appl. Phys. B, 116 :643 (September 2014)
Abstract:
Laser-accelerated electron pulses have been used to irradiate human tumors grown on mice’s ears during radiobiological experiments. These experiments have been carried out with the JETI laser system at the Institute of Optics and Quantum Electronics in Jena, Germany. To treat a total of more than 50 mice, a stable and reliable operation of the laser-electron accelerator with a dose rate exceeding 1 Gy/min was necessary. To achieve this, a sufficient number of electrons at energies in excess of 5 MeV had to be generated. The irradiation time for a single mouse was a few minutes. Furthermore, the particle pulses’ parameters needed to remain achievable for a time period of several weeks. Due to the online detection of the radiation dose, the unavoidable shot-to-shot fluctuations, currently still typical for laser-based particle accelerators, could be compensated. The results demonstrate that particle pulses generated with laser-based accelerators have the potential to be a future alternative for conventional particle accelerators used for the irradiation of tumors.
V. Hilbert, C. Rödel, G. Brenner, T. Döppner, S. Düsterer, S. Dziarzhytski, L. Fletcher, E. Förster, S. H. Glenzer, M. Harmand, N. J. Hartley, L. Kazak, D. Komar, T. Laarmann, H. J. Lee, T. Ma, M. Nakatsutsumi, A. Przystawik, H. Redlin, S. Skruszewicz, P. Sperling, J. Tiggesbäumker, S. Toleikis, and U. Zastrau
Spatio-temporal coherence of free-electron laser radiation in the extreme ultraviolet determined by a Michelson interferometer
Appl. Phys. Lett., 105 :101102 (September 2014)
Abstract:
A key feature of extreme ultraviolet (XUV) radiation from free-electron lasers (FELs) is its spatial and temporal coherence. We measured the spatio-temporal coherence properties of monochromatized FEL pulses at 13.5 nm using a Michelson interferometer. A temporal coherence time of (59±8) fs has been determined, which is in good agreement with the spectral bandwidth given by the monochromator. Moreover, the spatial coherence in vertical direction amounts to about 15% of the beam diameter and about 12% in horizontal direction. The feasibility of measuring spatio-temporal coherence properties of XUV FEL radiation using interferometric techniques advances machine operation and experimental studies significantly.
B. Botermann, D. Bing, C. Geppert, G. Gwinner, T. Hänsch, G. Huber, S. Karpuk, A. Krieger, T. Kühl, W. Nörtershäuser, C. Novotny, S. Reinhardt, R. Sanchez, D. Schwalm, T. Stöhlker, A. Wolf, and G. Saathoff
Test of Time Dilation Using Stored Li+ Ions as Clocks at Relativistic Speed
Phys. Rev. Lett., 113 :120405 (September 2014)
Abstract:
We present the concluding result from an Ives-Stilwell-type time dilation experiment using Li+7 ions confined at a velocity of β=v/c=0.338 in the storage ring ESR at Darmstadt. A Λ-type three-level system within the hyperfine structure of the Li+7S13→P23 line is driven by two laser beams aligned parallel and antiparallel relative to the ion beam. The lasers’ Doppler shifted frequencies required for resonance are measured with an accuracy of <4×10−9 using optical-optical double resonance spectroscopy. This allows us to verify the special relativity relation between the time dilation factor γ and the velocity β, γ√(1- β^2)=1 to within ±2.3×10−9 at this velocity. The result, which is singled out by a high boost velocity β, is also interpreted within Lorentz invariance violating test theories.
F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, A. Wienke, U. Zeitner, F. Fuchs, C. Jauregui, D. Wandt, D. Kracht, J. Limpert, and A. Tünnermann
152  W average power Tm-doped fiber CPA system
Opt. Lett., 39 :4671 (August 2014)
Abstract:
A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.
M. Tiegel, A. Herrmann, S. Kuhn, C. Russel, J. Körner, D. Klöpfel, R. Seifert, J. Hein, and M.C. Kaluza
Fluorescence and thermal stress properties of Yb 3+ -doped alumino silicate glasses for ultra high peak power laser applications
Laser Phys. Lett., 11 :115811 (August 2014)
Abstract:
Various alumino silicate glasses (network modifier ions: Li^+ , Mg^2+ , Zn^2+ and/or La^^3+ ) doped with 1  ×  10^20 Yb^3+  cm^−3 (about 0.2 mol% Yb_2 O_3 ) were prepared. The glasses were studied with respect to their thermo-mechanical and fluorescence properties. Huge differences are found for the coefficients of thermal expansion which determine the thermal shock resistance of the material and hence are required for ultra-high power laser applications. Here, zinc and magnesium alumino silicate glasses show the lowest values. The fluorescence lifetimes of the glasses increase with decreasing average atomic weight of the glass composition (685–1020  µ s). All glasses show broad and smooth emission spectra with little variations due to compositional changes. Mixed lithium zinc or lithium magnesium alumino silicate glasses could be promising new laser materials especially with respect to ultra-high peak power systems or applications with high repetition rates.
H. Gies, F. Karbstein, and R. Shaisultanov
Laser photon merging in an electromagnetic field inhomogeneity
Phys. Rev. D, 90 :033007 (August 2014)
Abstract:
We study the effect of laser photon merging, or equivalently high harmonic generation, in the quantum vacuum subject to inhomogeneous electromagnetic fields. Such a process is facilitated by the effective nonlinear couplings arising from charged particle-antiparticle fluctuations in the quantum vacuum subject to strong electromagnetic fields. We derive explicit results for general kinematic and polarization configurations involving optical photons. Concentrating on merged photons in reflected channels which are preferable in experiments for reasons of noise suppression, we demonstrate that photon merging is typically dominated by the competing nonlinear process of quantum reflection, though appropriate polarization and signal filtering could specifically search for the merging process. As a byproduct, we devise a novel systematic expansion of the photon polarization tensor in plane wave fields.
M. Möller, F. Meyer, A. M. Sayler, G.G. Paulus, M. F. Kling, B. E. Schmidt, W. Becker, and D. B. Milošević
Off-axis low-energy structures in above-threshold ionization
Phys. Rev. A, 90 :023412 (August 2014)
Abstract:
The velocity map of the above-threshold ionization electron spectrum at long laser wavelength exhibits a characteristic structure normal to the laser polarization, which has the appearance of a trident or a three-pronged fork. The forklike structure vanishes for few-cycle laser pulses. It is explained in terms of the classical-electron-trajectories model of strong-field ionization augmented so as to allow for rescattering. The analysis reveals its relation to the so-called low-energy structure, which was recently observed for very small transverse momenta.
J. Braun, H. Gies, L. Janssen, and D. Roscher
Phase structure of many-flavor QED₃
Phys. Rev. D, 90 :036002 (August 2014)
Abstract:
We analyze the many-flavor phase diagram of quantum electrodynamics (QED) in 2+1 (Euclidean) space-time dimensions. We compute the critical flavor number above which the theory is in the quasiconformal massless phase. For this, we study the renormalization group fixed-point structure in the space of gauge interactions and pointlike fermionic self-interactions, the latter of which are induced dynamically by fermion-photon interactions. We find that a reliable estimate of the critical flavor number crucially relies on a careful treatment of the Fierz ambiguity in the fermionic sector. Using a Fierz-complete basis, our results indicate that the phase transition towards a chirally broken phase occurring at small flavor numbers could be separated from the quasiconformal phase at larger flavor numbers, allowing for an intermediate phase which is dominated by fluctuations in a vector channel. If these interactions approach criticality, the intermediate phase could be characterized by a Lorentz-breaking vector condensate.
P.-M. Hillenbrand, S. Hagmann, D. Atanasov, D. Banaś, K.-H. Blumenhagen, C. Brandau, W. Chen, E. De Filippo, A. Gumberidze, D. L. Guo, D. H. Jakubassa-Amundsen, O. Kovtun, C. Kozhuharov, M. Lestinsky, Yu. A. Litvinov, A. Müller, R. A. Müller, H. Rothard, S. Schippers, M. S. Schöffler, U. Spillmann, A. Surzhykov, S. Trotsenko, N. Winckler, X. L. Yan, V. A. Yerokhin, X. L. Zhu, and T. Stöhlker
Radiative-electron-capture-to-continuum cusp in U⁸⁸⁺+N₂ collisions and the high-energy endpoint of electron-nucleus bremsstrahlung
Phys. Rev. A, 90 :022707 (August 2014)
Abstract:
The radiative electron capture of a target electron into the projectile continuum has been studied for the collision system U88+ + N2 → U88+ + [N+2]∗ + e− + γ at 90 MeV/u. Using a magnetic electron spectrometer, the energy distribution of cusp electrons emitted under an angle of 0∘ with respect to the projectile beam and with a velocity close to the projectile velocity has been measured in coincidence with the emitted photons under various observation angles. The experimental results provide a stringent test for the corresponding process in inverse kinematics, namely, the theory of electron-nucleus bremsstrahlung at the high-energy endpoint. For comparison this process is calculated using fully relativistic Dirac wave functions and using semirelativistic Sommerfeld-Maue wave functions.