Referierte Publikationen

2015

O. de Vries, T. Saule, M. Plötner, F. Lücking, T. Eidam, A. Hoffmann, A. Klenke, S. Hädrich, J. Limpert, S. Holzberger, T. Schreiber, R. Eberhardt, I. Pupeza, and A. Tünnermann
Acousto-optic pulse picking scheme with carrier-frequency-to-pulse-repetition-rate synchronization
Opt. Express, 23 :19586 (July 2015)
Abstract:
We introduce and experimentally validate a pulse picking technique based on a travelling-wave-type acousto-optic modulator (AOM) having the AOM carrier frequency synchronized to the repetition rate of the original pulse train. As a consequence, the phase noise characteristic of the original pulse train is largely preserved, rendering this technique suitable for applications requiring carrier-envelope phase stabilization. In a proof-of-principle experiment, the 1030-nm spectral part of an 74-MHz, carrier-envelope phase stable Ti:sapphire oscillator is amplified and reduced in pulse repetition frequency by a factor of two, maintaining an unprecedentedly low carrier-envelope phase noise spectral density of below 68 mrad. Furthermore, a comparative analysis reveals that the pulse-picking-induced additional amplitude noise is minimized, when the AOM is operated under synchronicity. The proposed scheme is particularly suitable when the down-picked repetition rate is still in the multi-MHz-range, where Pockels cells cannot be applied due to piezoelectric ringing.
D. Atanasov, K. Blaum, F. Bosch, C. Brandau, P. Bühler, X. Chen, I. Dillmann, T. Faestermann, B. Gao, H. Geissel, R. Gernhäuser, S. Hagmann, T. Izumikawa, P.-M. Hillenbrand, C. Kozhuharov, J. Kurcewicz, S. Litvinov, Y. Litvinov, X. Ma, G. Münzenberg, M. Najafi, F. Nolden, T. Ohtsubo, A. Ozawa, F. Ozturk, Z. Patyk, M. Reed, R. Reifarth, M. Sanjari, D. Schneider, M. Steck, T. Stöhlker, B. Sun, F. Suzaki, T. Suzuki, C. Trageser, X. Tu, T. Uesaka, P. Walker, M. Wang, H. Weick, N. Winckler, P. Woods, H. Xu, T. Yamaguchi, X. Yan, and Y. Zhang
Between atomic and nuclear physics: radioactive decays of highly-charged ions
J. Phys. B, 48 :144024 (July 2015)
Abstract:
Highly charged radioactive ions can be stored for extended periods of time in storage rings which allows for precision measurements of their decay modes. The straightforward motivation for performing such studies is that fully ionised nuclei or few-electron ions can be viewed as clean quantum-mechanical systems, in which the interactions of the many electrons can be either excluded or treated precisely. Thus, the influence of the electron shell on the decay probability can be investigated. Another important motivation is stellar nucleosynthesis, which proceeds at high temperatures and the involved atoms are therefore highly ionised. Presented here is a compact review of the relevant experiments conducted at heavy-ion storage rings. Furthermore, we outline the perspectives for future experiments at new-generation storage-ring facilities.
S. R. Mirfayzi, S. Kar, H. Ahmed, A. G. Krygier, A. Green, A. Alejo, R. Clarke, R. R. Freeman, J. Fuchs, D. Jung, A. Kleinschmidt, J. T. Morrison, Z. Najmudin, H. Nakamura, P. Norreys, M. Oliver, M. Roth, L. Vassura, M. Zepf, and M. Borghesi
Calibration of time of flight detectors using laser-driven neutron source
Rev. Sci. Instrum., 86 :073308 (July 2015)
Abstract:
Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.
S. Stock, A. Surzhykov, S. Fritzsche, and D. Seipt
Compton scattering of twisted light: Angular distribution and polarization of scattered photons
Phys. Rev. A, 92 :013401 (July 2015)
Abstract:
Compton scattering of twisted photons is investigated within a nonrelativistic framework using first-order perturbation theory. We formulate the problem in the density-matrix theory, which enables one to gain new insights into scattering processes of twisted particles by exploiting the symmetries of the system. In particular, we analyze how the angular distribution and polarization of the scattered photons are affected by the parameters of the initial beam such as the opening angle and the projection of orbital angular momentum. We present analytical and numerical results for the angular distribution and the polarization of Compton scattered photons for initially twisted light and compare them with the standard case of plane-wave light.
A. Sävert, S. P. D. Mangles, M. Schnell, E. Siminos, J. M. Cole, M. Leier, M. Reuter, M. B. Schwab, M. Möller, K. Poder, O. Jäckel, G.G. Paulus, C. Spielmann, S. Skupin, Z. Najmudin, and M.C. Kaluza
Direct Observation of the Injection Dynamics of a Laser Wakefield Accelerator Using Few-Femtosecond Shadowgraphy
Phys. Rev. Lett., 115 :055002 (July 2015)
Abstract:
We present few-femtosecond shadowgraphic snapshots taken during the nonlinear evolution of the plasma wave in a laser wakefield accelerator with transverse synchronized few-cycle probe pulses. These snapshots can be directly associated with the electron density distribution within the plasma wave and give quantitative information about its size and shape. Our results show that self-injection of electrons into the first plasma-wave period is induced by a lengthening of the first plasma period. Three-dimensional particle-in-cell simulations support our observations.
B. Ecker, B. Aurand, D. C. Hochhaus, P. Neumayer, B. Zielbauer, E. Oliva, L. Li, T. T. T. Le, Q. Jin, H. Zhao, K. Cassou, S. Daboussi, O. Guilbaud, S. Kazamias, D. Ros, P. Zeitoun, and T. Kühl
Double-stage soft x-ray laser pumped by multiple pulses applied in grazing incidence
J. Phys. B, 48 :144009 (July 2015)
Abstract:
In this paper we report on results obtained with a compact double-stage molybdenum x-ray laser (XRL), operated with a total pump energy of 600 mJ. The two gain regions were pumped using the double-pulse grazing incidence pumping technique, which includes travelling wave excitation for both the seed- and the amplifier-target. In addition, the influence of an additional pre-pulse has been studied. Seeded XRL operation has been demonstrated in both schemes, resulting in XRL pulses with a divergence of 2×2 mrad. The peak brilliance of the amplified XRL of 4×10²³ photons/s/mm²/mrad² in 5×10⁻⁵ relative bandwidth was more than two orders of magnitude larger compared to the original seed pulses. The presented experimental concept provides an alternative approach to the currently more common use of high-order harmonic pulses as a seed source, well suited for applications like laser spectroscopy of highly-charged ions at a storage ring.
M. Guerra, T. Stöhlker, P. Amaro, J. Machado, and J. P. Santos
Electron impact ionization cross-sections for few-electron uranium ions
J. Phys. B, 48 :144027 (July 2015)
Abstract:
Electron impact ionization cross sections for the U^88+ , U^89+ , U^90+ and U^91+ ions were calculated with the relativistic binary encounter Bethe model (RBEB), the modified RBEB (MRBEB) and the new MRBEB corrected by the ionic factor (MRBR–IF). Our results were compared with the available three sets of experimental data and the most used theoretical results. The MRBEB–IF results are the ones that better agree with the experimental data of the four analysed ions.
H. Stöcker, T. Stöhlker, and C. Sturm
FAIR - Cosmic Matter in the Laboratory
J. Phys.: Conf. Ser., 623 :012026 (July 2015)
Abstract:
To explore cosmic matter in the laboratory — this fascinating research prospect becomes available at the Facility for Antiproton and Ion Research, FAIR. The new facility is being constructed within the next five years adjacent to the existing accelerator complex of the GSI Helmholtz Centre for Heavy Ion Research at Darmstadt/Germany, expanding the research goals and technical possibilities substantially. This includes new insights into the dynamics of supernovae depending on the properties of short-lived neutron-rich nuclei which will be investigated with intense rare isotope beams. New insights will be provided into the interior of stars by exploring dense plasmas with intense heavy-ion beams combined with a high-performance laser — or into neutron star cores by probing the highest baryon densities in relativistic nucleus—nucleus collisions at unprecedented collision rates. To the latter, the properties of hadrons play an important part which will be systematically studied by high precision hadron spectroscopy with antiproton beams at unmatched intensities. The worldwide unique accelerator and experimental facilities of FAIR will open the way for a broad spectrum of unprecedented fore-front research supplying a large variety of experiments in hadron, nuclear, atomic and plasma physics as well as biomedical and material science which will be briefly described in this article. This article is based on the FAIR Green Paper and gives an update of former publications.
V. Serbo, I. P. Ivanov, S. Fritzsche, D. Seipt, and A. Surzhykov
Scattering of twisted relativistic electrons by atoms
Phys. Rev. A, 92 :012705 (July 2015)
Abstract:
The Mott scattering of high-energetic twisted electrons by atoms is investigated within the framework of the first Born approximation and Dirac's relativistic equation. Special emphasis is placed on the angular distribution and longitudinal polarization of the scattered electrons. In order to evaluate these angular and polarization properties we consider two experimental setups in which the twisted electron beam collides with either a single well-localized atom or macroscopic atomic target. Detailed relativistic calculations have been performed for both setups and for the electrons with kinetic energy from 10 to 1000 keV. The results of these calculations indicate that the emission pattern and polarization of outgoing electrons differ significantly from the scattering of plane-wave electrons and can be very sensitive to the parameters of the incident twisted beam. In particular, it is shown that the angular- and polarization-sensitive Mott measurements may reveal valuable information about both the transverse and longitudinal components of the linear momentum and the projection of the total angular momentum of twisted electron states. Thus, the Mott scattering emerges as a diagnostic tool for the relativistic vortex beams.
S. Busold, D. Schumacher, C. Brabetz, D. Jahn, F. Kroll, O. Deppert, U. Schramm, T. Cowan, A. Blazevic, V. Bagnoud, and M. Roth
Towards highest peak intensities for ultra-short MeV-range ion bunches
Sci. Rep., 5 :1 (July 2015)
Abstract:
A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8MeV, up to 5×10^8 protons could be re-focused in time to a FWHM bunch length of τ=(462±40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.
N. Frömmgen, D. L. Balabanski, M. L. Bissell, J. Bieron, K. Blaum, B. Cheal, K. Flanagan, S. Fritzsche, C. Geppert, M. Hammen, M. Kowalska, K. Kreim, A. Krieger, R. Neugart, G. Neyens, M. M. Rajabali, W. Nörtershäuser, J. Papuga, and D. T. Yordanov
Collinear laser spectroscopy of atomic cadmium: Extraction of nuclear magnetic dipole and electric quadrupole moments
Eur. Phys. J. D, 69 :164 (June 2015)
Abstract:
Hyperfine structure A and B factors of the atomic 5s5p ³P₂ -> 5s6s ³S₁ transition are determined from collinear laser spectroscopy data of ¹⁰⁷−¹²³Cd and ¹¹¹m−¹²³mCd. Nuclear magnetic moments and electric quadrupole moments are extracted using reference dipole moments and calculated electric field gradients, respectively. The hyperfine structure anomaly for isotopes with s₁/₂ and d₅/₂ nuclear ground states and isomeric h11/2 states is evaluated and a linear relationship is observed for all nuclear states except s₁/₂. This corresponds to the Moskowitz-Lombardi rule that was established in the mercury region of the nuclear chart but in the case of cadmium the slope is distinctively smaller than for mercury. In total four atomic and ionic levels were analyzed and all of them exhibit a similar behaviour. The electric field gradient for the atomic 5s5p ³P₂ level is derived from multi-configuration Dirac-Hartree-Fock calculations in order to evaluate the spectroscopic nuclear quadrupole moments. The results are consistent with those obtained in an ionic transition and based on a similar calculation.
G. Weber, H. Bräuning, A. Surzhykov, C. Brandau, S. Fritzsche, S. Geyer, R. E. Grisenti, S. Hagmann, C. Hahn, R. Hess, S. Hess, C. Kozhuharov, M. Kühnel, R. Märtin, N. Petridis, U. Spillmann, S. Trotsenko, D. F. A. Winters, and T. Stöhlker
Combined linear polarization and angular distribution measurements of x-rays for precise determination of multipole-mixing in characteristic transitions of high- Z systems
J. Phys. B, 48 :144031 (June 2015)
Abstract:
By applying novel-type position sensitive x-ray detectors as Compton polarimeters we recently performed a study of the linear polarization of Lyman-α₁ radiation following radiative electron capture into initially bare uranium ions. It was found that a model-independent determination of the ratio of the E1 and M2 transition amplitudes, and consequently of the corresponding transition rates, is feasible by combining the linear polarization data with a measurement of the angular distribution of the emitted radiation. In this work a detailed description of the underlying experimental technique for combined measurements of the linear polarization and the angular distribution of characteristic transitions in high-Z ions is presented. Special emphasis is given to the application of two, two-dimensional position-sensitive x-ray detectors for Compton polarimetry of hard x-rays. Moreover, we demonstrate the polarimeter efficiency of such detector systems can be significantly improved if events, where the charge is spread over neighboring segments, are reconstructed to be used in the polarization analysis.
H. F. Beyer, T. Gassner, M. Trassinelli, R. Hess, U. Spillmann, D. Banaś, K.-H. Blumenhagen, F. Bosch, C. Brandau, W. Chen, C. Dimopoulou, E. Förster, R. E. Grisenti, A. Gumberidze, S. Hagmann, P.-M. Hillenbrand, P. Indelicato, P. Jagodzinski, T. Kämpfer, C. Kozhuharov, M. Lestinsky, D. Liesen, Y. A. Litvinov, R. Loetzsch, B. Manil, R. Märtin, F. Nolden, N. Petridis, M. S. Sanjari, K. S. Schulze, M. Schwemlein, A. Simionovici, M. Steck, T. Stöhlker, C. I. Szabo, S. Trotsenko, I. Uschmann, G. Weber, O. Wehrhan, N. Winckler, D. F. A. Winters, N. Winters, and E. Ziegler
Crystal optics for precision x-ray spectroscopy on highly charged ions—conception and proof
J. Phys. B, 48 :144010 (June 2015)
Abstract:
The experimental investigation of quantum-electrodydamic contributions to the binding energies of inner shells of highly charged heavy ions requires an accurate spectroscopy in the region of hard x-rays suitable at a limited source strength. For this purpose the focusing compensated asymmetric Laue crystal optics has been developed and a twin-spectrometer assembly has been built and commissioned at the experimental storage ring of the GSI Helmholtzzentrum Darmstadt. We characterize the crystal optics and demonstrate the usefulness of the instrumentation for accurate spectroscopy of both stationary and fast moving x-ray sources. The experimental procedures discussed here may also be applied for other spectroscopic studies where a transition from conventional germanium x-ray detectors to crystal spectrometers seems too demanding because of low source intensity.
A. Gumberidze, D. B. Thorn, C. J. Fontes, B. Najjari, H. L. Zhang, A. Surzhykov, A. Voitkiv, S. Fritzsche, D. Banaś, H. Beyer, W. Chen, R. D. DuBois, S. Geyer, R. E. Grisenti, S. Hagmann, M. Hegewald, S. Hess, C. Kozhuharov, R. Märtin, N. Petridis, R. Reuschl, A. Simon, U. Spillmann, M. Trassinelli, S. Trotsenko, G. Weber, D. F. A. Winters, N. Winters, D. Yu, and T. Stöhlker
Ground-state excitation of heavy highly-charged ions
J. Phys. B, 48 :144006 (June 2015)
Abstract:
We have studied the excitation of H-like and He-like uranium (U^91+ and U^90+ ) in relativistic collisions with gaseous targets by observing the subsequent x-ray emission. The experiment was conducted at the ESR storage ring of the GSI accelerator facility in Darmstadt, Germany. The measurements were performed with a newly developed multi-phase target at different collision energies. This enabled us to explore the proton (nucleus) impact excitation as well as the electron impact excitation processes in the relativistic collisions. The large fine-structure splitting in uranium allowed us to unambiguously resolve excitation to different L-shell levels. Moreover, information about the population of different magnetic sublevels has been obtained via an angular differential study of the decay photons associated with the subsequent de-excitation process. The experimental results are compared with calculations performed within the relativistic framework including excitation mechanisms due to both protons (nucleus) and electrons.
M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann
Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses
Opt. Express, 23 :13776 (June 2015)
Abstract:
We present a rigorous study on the impact of atmospheric molecular absorption on the linear propagation of ultrashort pulses in the mid-infrared wavelength region. An ultrafast thulium-based fiber laser was employed to experimentally investigate ultrashort-pulse propagation through the atmosphere in a spectral region containing several strong molecular absorption lines. The atmospheric absorption profile causes a significant degradation of the pulse quality in the time domain as well as a distortion of the transverse beam profile in the spatial domain. Numerical simulations carried out in the small signal limit accurately reproduce the experimental observations in the time domain and reveal that the relative loss in peak power after propagation can be more than twice as high as the relative amount of absorbed average power. Although their nature is purely linear (i.e. the intensities considered are sufficiently low) the discussed effects represent significant challenges to performance-scaling of mid-infrared ultrafast lasers operating in spectral regions with molecular absorption bands. Guidelines for an efficient mitigation of the pulse quality degradation and the beam profile distortion are discussed.
H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann
Impact of photodarkening on the mode instability threshold
Opt. Express, 23 :15265 (June 2015)
Abstract:
The threshold-like onset of mode instabilities is currently the main limitation for the scaling of the average output power of fiber laser systems with diffraction limited beam quality. In this contribution, the impact of a wavelength shift of the seed signal on the mode instability threshold has been investigated. Against expectations, it is experimentally shown that the highest mode instabilities threshold is reached around 1030 nm and not for the smallest wavelength separation between pump and signal. This finding implies that the quantum defect is not the only source of thermal heating in the fiber. Systematic experiments and simulations have helped in identifying photodarkening as the most likely second heat source in the fiber. It is shown that even a negligible photodarkening-induced power loss can lead to a decrease of the mode instabilities threshold by a factor of two. Consequently, reduction of photodarkening is a promising way to mitigate mode instabilities.
J. Vollbrecht, Z. Andelkovic, A. Dax, W. Geithner, C. Geppert, C. Gorges, M. Hammen, V. Hannen, S. Kaufmann, K. König, Y. Litvinov, M. Lochmann, B. Maass, J. Meisner, T. Murboeck, W. Nörtershäuser, R. Sanchez, S. Schmidt, M. Schmidt, M. Steck, T. Stöhlker, R. C. Thompson, J. Ullmann, and C. Weinheimer
Laser spectroscopy of the ground-state hyperfine structure in H-like and Li-like bismuth
J. Phys.: Conf. Ser., 583 :012002 (June 2015)
Abstract:
The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center in Darmstadt aims for the determination of the ground state hyperfine (HFS) transitions and lifetimes in hydrogen-like ( 209 Bi82+ ) and lithium-like ( 209 Bi 0+ ) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. While the HFS transition in H-like bismuth was already observed in earlier experiments at the ESR, the LIBELLE experiment succeeded for the first time to measure the HFS transition in Li-like bismuth in a laser spectroscopy experiment.
M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome photonic crystal fiber
Opt. Lett., 40 :2770 (June 2015)
Abstract:
Nonlinear pulse compression of ultrashort pulses is an established method for reducing the pulse duration and increasing the pulse peak power beyond the intrinsic limits of a given laser architecture. In this proof-of-principle experiment, we demonstrate nonlinear compression of the pulses emitted by a high-repetition-rate thulium-based fiber CPA system. The initial pulse duration of about 400 fs has been shortened to <70  fs with 19.7 μJ of pulse energy, which corresponds to about 200 MW of pulse peak power.
A. N. Artemyev, and A. Surzhykov
Quantum Electrodynamical Corrections to Energy Levels of Diatomic Quasimolecules
Phys. Rev. Lett., 114 :243004 (June 2015)
Abstract:
We elaborate an ab initio approach for the evaluation of the one-loop quantum electrodynamical corrections to energy levels of diatomic quasimolecules. The approach accounts for the interaction between an electron and two nuclei in all orders in Zα and can be applied for a wide range of internuclear distances, up to R≈1000  fm. Based on the developed theory, detailed calculations are performed for the self-energy and vacuum-polarization corrections to the energy of the 1σg ground state of the U92+–U91+ dimer that can be produced in slow ion-ion collisions. The calculations predict the remarkable energy shift that arises due to the nonspherical contributions to the electron-nuclei potential taken beyond the standard monopole approximation.
J. Braun, S. Finkbeiner, F. Karbstein, and D. Roscher
Search for inhomogeneous phases in fermionic models
Phys. Rev. D, 91 :116006 (June 2015)
Abstract:
We revisit the Gross-Neveu model with N fermion flavors in 1+1 dimensions and compute its phase diagram at finite temperature and chemical potential in the large-N limit. To this end, we double the number of fermion degrees of freedom in a specific way which allows us to detect inhomogeneous phases in an efficient manner. We show analytically that this “fermion doubling trick” predicts correctly the position of the boundary between the chirally symmetric phase and the phase with broken chiral symmetry. Most importantly, we find that the emergence of an inhomogeneous ground state is predicted correctly. We critically analyze our approach based on this trick and discuss its applicability to other theories, such as fermionic models in higher dimensions, where it may be used to guide the search for inhomogeneous phases.
F. Wagner, S. Bedacht, V. Bagnoud, O. Deppert, S. Geschwind, R. Jaeger, A. Ortner, A. Tebartz, B. Zielbauer, D. H. H. Hoffmann, and M. Roth
Simultaneous observation of angularly separated laser-driven proton beams accelerated via two different mechanisms
Phys. Plasmas, 22 :063110 (June 2015)
Abstract:
We present experimental data showing an angular separation of laser accelerated proton beams. Using flat plastic targets with thicknesses ranging from 200 nm to 1200 nm, a laser intensity of 6×10²⁰ W cm⁻² incident with an angle of 10°, we observe accelerated protons in target normal direction with cutoff energies around 30 MeV independent from the target thickness. For the best match of laser and target conditions, an additional proton signature is detected along the laser axis with a maximum energy of 65 MeV. These different beams can be attributed to two acceleration mechanisms acting simultaneously, i.e., target normal sheath acceleration and acceleration based on relativistic transparency, e.g., laser breakout afterburner, respectively.
F. Karbstein, and R. Shaisultanov
Stimulated photon emission from the vacuum
Phys. Rev. D, 91 :113002 (June 2015)
Abstract:
We study the effect of stimulated photon emission from the vacuum in strong space-time-dependent electromagnetic fields. We emphasize the viewpoint that the vacuum subjected to macroscopic electromagnetic fields with at least one nonzero electromagnetic field invariant, as, e.g., attainable by superimposing two laser beams, can represent a source term for outgoing photons. We believe that this view is particularly intuitive and allows for a straightforward and intuitive study of optical signatures of quantum vacuum nonlinearity in realistic experiments involving the collision of high-intensity laser pulses, and exemplify this view for the vacuum subjected to a strong standing electromagnetic wave as generated in the focal spot of two counterpropagating, linearly polarized, high-intensity laser pulses. Focusing on a comparably simple electromagnetic field profile, which should nevertheless capture the essential features of the electromagnetic fields generated in the focal spots of real high-intensity laser beams, we provide estimates for emission characteristics and the numbers of emitted photons attainable with present and near future high-intensity laser facilities.
J. Ullmann, Z. Andelkovic, A. Dax, W. Geithner, C. Geppert, C. Gorges, M. Hammen, V. Hannen, S. Kaufmann, K. König, Y. Litvinov, M. Lochmann, B. Maass, J. Meisner, T. Murböck, R. Sanchez, M. Schmidt, S. Schmidt, M. Steck, T. Stöhlker, R. C. Thompson, J. Vollbrecht, C. Weinheimer, and W. Nörtershäuser
An improved value for the hyperfine splitting of hydrogen-like 209 Bi 82+
J. Phys. B, 48 :144022 (May 2015)
Abstract:
We report an improved measurement of the hyperfine splitting in hydrogen-like bismuth (209 Bi^82+) at the experimental storage ring ESR at GSI by laser spectroscopy on a coasting beam. Accuracy was improved by about an order of magnitude compared to the first observation in 1994. The most important improvement is an in situ high voltage measurement at the electron cooler (EC) platform with an accuracy at the 10 ppm level. Furthermore, the space charge effect of the EC current on the ion velocity was determined with two independent techniques that provided consistent results. The result of lambda₀=243.821(6) nm provides an important reference value for experiments testing bound-state quantum electrodynamics in the strong magnetic field regime by evaluating the specific difference between the splittings in the hydrogen-like and lithium-like ions.
H. Höppner, A. Hage, T. Tanikawa, M. Schulz, R. Riedel, U. Teubner, M. J. Prandolini, B. Faatz, and F. Tavella
An optical parametric chirped-pulse amplifier for seeding high repetition rate free-electron lasers
New J. Phys., 17 :053020 (May 2015)
Abstract:
High repetition rate free-electron lasers (FEL), producing highly intense extreme ultraviolet and x-ray pulses, require new high power tunable femtosecond lasers for FEL seeding and FEL pump-probe experiments. A tunable, 112 W (burst mode) optical parametric chirped-pulse amplifier (OPCPA) is demonstrated with center frequencies ranging from 720–900 nm, pulse energies up to 1.12 mJ and a pulse duration of 30 fs at a repetition rate of 100 kHz. Since the power scalability of this OPCPA is limited by the OPCPA-pump amplifier, we also demonstrate a 6.7–13.7 kW (burst mode) thin-disk OPCPA-pump amplifier, increasing the possible OPCPA output power to many hundreds of watts. Furthermore, third and fourth harmonic generation experiments are performed and the results are used to simulate a seeded FEL with high-gain harmonic generation.
C. Gaida, M. Kienel, M. Müller, A. Klenke, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
Coherent combination of two Tm-doped fiber amplifiers
Opt. Lett., 40 :2301 (May 2015)
Abstract:
The efficient coherent combination of two ultrafast Tm-doped fiber amplifiers in the 2-µm wavelength region is demonstrated. The performance of the combined amplifiers is compared to the output characteristics of a single amplifier being limited by the onset of detrimental nonlinear effects. Nearly transform-limited pulses with 830- fs duration, 22-µJ pulse energy, and 25-MW peak power have been achieved with a combining efficiency greater than 90%. Based on this result, it can be expected that 2-µm-ultrafast-fiber-laser systems will enter new performance realms in the near future.