Referierte Publikationen


G. Weber, K.-H. Blumenhagen, H. Bräuning, H. Ding, S. Fritzsche, S. Hess, R. Märtin, U. Spillmann, A. Surzhykov, S. Trotsenko, D. F. A. Winters, V. A. Yerokhin, and T. Stöhlker
Compton polarimetry using double-sided segmented x-ray detectors
J. Phys.: Conf. Ser., 583 :012041 (February 2015)
Hard x-ray polarimetry of radiation emitted in collisions of heavy ions, electrons or photons with matter provides detailed information on the collision dynamics as well as of the atomic structure in the presence of extreme field strengths. Moreover, it also opens a route for polarization diagnosis of spin-polarized ion and electron beams which, for example, might be useful in future parity non-conservation studies. Owing to recent progress in the development of highly segmented solid-state detectors, a novel type of polarimeter for the hard x-ray regime has become available. Applied as Compton polarimeters, two-dimensional position-sensitive x-ray detectors now allow for precise and efficient measurements of x-ray linear polarization properties. In this report recent polarimetry studies using such detector systems are reviewed.
S. Kuhn, M. Tiegel, A. Herrmann, J. Körner, R. Seifert, F. Yue, D. Klöpfel, J. Hein, M.C. Kaluza, and C. Russel
Effect of hydroxyl concentration on Yb3+ luminescence properties in a peraluminous lithium-alumino-silicate glass
Opt. Mater. Express, 5 :430 (February 2015)
Ytterbium doped lithium-alumino-silicate glasses suitable for diode-pumped laser applications were investigated concerning the hydroxyl quenching of the Yb^(3+) fluorescence. Glasses of the nominal composition 18 mol% Li2O, 22 mol% Al2O3 and 60 mol% SiO2 with variable OH concentrations NOH (between 0.04 and 6.01 ∙ 1019 cm−3) and Yb3+ concentrations NYb (between 0.1 and 9 ∙ 1020 cm−3) were produced and a direct correlation between spontaneous emission decay rate and the product NYb ∙ NOH was observed. The radiative spontaneous emission rate in the glass host is around 1,000 s−1 (radiative lifetime 1.0 ms) and the microparameter for Yb-Yb energy migration, CYb-Yb, was found to be 1.358∙10^−38 cm^6 s−1. It was calculated that on average 17% of the OH groups in the glass contribute to the quenching of the Yb3+ fluorescence. By analysis of the UV edge of the glass it was concluded that melting under inert conditions leads to reduction of iron impurities to Fe2+, which can act as quenching sites for the Yb3+ ions and therefore may additionally reduce the energy storage capability of the laser material.
P.-M. Hillenbrand, S. Hagmann, D. H. Jakubassa-Amundsen, J. M. Monti, D. Banaś, K.-H. Blumenhagen, C. Brandau, W. Chen, P. D. Fainstein, E. De Filippo, A. Gumberidze, D. L. Guo, M. Lestinsky, Yu. A. Litvinov, A. Müller, R. D. Rivarola, H. Rothard, S. Schippers, M. S. Schöffler, U. Spillmann, S. Trotsenko, X. L. Zhu, and T. Stöhlker
Electron-capture-to-continuum cusp in U⁸⁸⁺+N₂ collisions
Phys. Rev. A, 91 :022705 (February 2015)
For the collision system U88+ -> N2 at a collision energy of 90 MeV/u, the energy distribution of electrons being nonradiatively captured from the target into the projectile continuum has been measured under an angle of 0∘ with respect to the projectile beam axis. This measurement of the electron-capture-to-continuum cusp with the highest effective projectile charge Z_eff,p=88 at a near-relativistic collision velocity of β≈0.41 is shown to be characterized by a strong asymmetry in the cusp shape. By comparing the data to measurements of the radiative-electron-capture-to-continuum cusp for the same collision system, the opposite asymmetry of the cusp is traced back to the varying underlying mechanisms. The experimental results are compared with the two theoretical calculations available for this process, one of them in the semirelativistic impulse approximation and the other in the nonrelativistic continuum-distorted-wave approach. A corresponding fully relativistic treatment may be motivated by the presented experimental data.
H. Y. Wang, X. Q. Yan, and M. Zepf
High-energy monoenergetic proton beams from two stage acceleration with a slow laser pulse
Phys. Rev. ST Accel. Beams, 18 :021302 (February 2015)
We present a new regime to generate high-energy quasimonoenergetic proton beams in a "slow-pulse" regime, where the laser group velocity vg<c is reduced by an extended near-critical density plasma. In this regime, for properly matched laser intensity and group velocity, ions initially accelerated by the light sail (LS) mode can be further trapped and reflected by the snowplough potential generated by the laser in the near-critical density plasma. These two acceleration stages are connected by the onset of Rayleigh-Taylor-like (RT) instability. The usual ion energy spectrum broadening by RT instability is controlled and high quality proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 10²¹ W/cm².
T. Krings, U. Spillmann, D. Protić, C. Roß, T. Stöhlker, G. Weber, L. Bombelli, R. Alberti, and T. Frizzi
Multi-element readout of structured HPGe-detectors for high-resolution x-ray spectroscopy using CUBE-preamplifiers
J. Instrum., 10 :C02043 (February 2015)
Very recently we have shown that CUBE-preamplifiers developed by XGLab s.r.l. can be used for the readout of single elements of thick structured planar HPGe- and Si(Li)-detectors produced by SEMIKON [1]. In this paper we will present the results of a simultaneous multi-element readout of structured detectors using the same preamplifiers for measuring high-energy x-rays (more than 100 keV) with a comparable energy resolution as for the single-element readout. Several high-purity germanium detectors (HPGe-detectors) with different position sensitive structures on one detector contact have been used for the first tests. In addition to that we have modified an existing 16-pixel HPGe-polarimeter from GSI-Darmstadt with the new readout. The detector elements (7 mm × 7 mm each, arranged in a 4 × 4 matrix) are connected to CUBE-preamplifiers used in pulse-reset mode. The technological progress achieved with this detector system resulting in a significant improved energy resolution will contribute a lot to much more precise polarization measurements of x-rays emitted from atom-ion collisions which are part of the physics program of the SPARC collaboration (Stored Particles Atomic Physics Research Collaboration) at GSI and the future FAIR accelerator facility (Facility for Antiproton and Ion Research).
M. Kienel, M. Müller, A. Klenke, T. Eidam, J. Limpert, and A. Tünnermann
Multidimensional coherent pulse addition of ultrashort laser pulses
Opt. Lett., 40 :522 (February 2015)
Spatially and temporally separated amplification and subsequent coherent addition of femtosecond pulses is a promising performance-scaling approach for ultrafast laser systems. Herein we demonstrate for the first time the application of this multidimensional scheme in a scalable architecture. Applying actively controlled divided-pulse amplification producing up to four pulse replicas that are amplified in two ytterbium-doped step-index fibers (6 μm core), pulse energies far beyond the damage threshold of the single fiber have been achieved. In this proof-of-principle experiment, high system efficiencies are demonstrated at both high pulse energies (i.e., in case of strong saturation) and high accumulated nonlinear phases.
B. Aurand, S. Kuschel, C. Rödel, O. Jäckel, J. Polz, B. Elkin, H. Zhao, A. Karmakar, P. Gibbon, M. Kaluza, and T. Kühl
Reduction of X-ray generation in high-intensity laser ion acceleration
Appl. Phys. B, 118 :247 (February 2015)
In this paper, we report on measurements of bremsstrahlung in laser ion acceleration experiments from ultra-thin, polymer-based target foils. The influence of laser polarization on the generated γ radiation, the maximum achievable proton energy and the total proton number is investigated. A clear benefit in terms of γ radiation reduction by the use of circular polarized light can be observed. At the same time, the total number of accelerated protons was increased.
A. Ortner, A. Frank, A. Blazevic, and M. Roth
Role of charge transfer in heavy-ion-beam—plasma interactions at intermediate energies
Phys. Rev. E, 91 :023104 (February 2015)
In this paper we investigate the influence of the plasma properties on the charge state distribution of a swift heavy ion beam interacting with a plasma. The main finding is that the charge state in plasma can be lower than in cold matter. The charge state distribution is determined by the ionization and recombination rates which are balancing each other out. Both, ionization and recombination rates, as well as atomic excitation and decay rates, depend on the plasma parameters in different ways. These effects have been theoretically studied by Monte Carlo simulations on the example of an argon ion beam at an energy of 4 MeV/u in a carbon plasma. This study covers a plasma parameter space ranging from ion densities from 10¹⁸ to 10²³ cm⁻³ and electron temperatures from 10 to 200 eV.
C. João, F. Wagner, J. Körner, J. Hein, T. Gottschall, J. Limpert, and V. Bagnoud
A 10-mJ-level compact CPA system based on Yb:KGW for ultrafast optical parametric amplifier pumping
Appl. Phys. B, 118 :401 (January 2015)
A compact diode-pumped Yb:KGW regenerative amplifier producing 10 Hz, 10-mJ-level picosecond pulses at 1,040 nm is demonstrated. The system is used at the new front end of the PHELIX petawatt laser system to pump an ultrafast optical parametric amplifier for temporal contrast enhancement. Before frequency doubling, a pulse length of ∼1 ps is obtained by using a stretcher/compressor system based on a single large-aperture chirped volume Bragg grating.
A. Ortner, S. Faik, D. Schumacher, M. Basko, A. Blazevic, S. Busold, S. Bedacht, W. Cayzac, A. Frank, D. Kraus, T. Rienecker, G. Schaumann, An. Tauschwitz, F. Wagner, and M. Roth
A novel double hohlraum target to create a moderately coupled plasma for ion stopping experiments
Nucl. Instr. Meth. Phys. Res. B, 343 :123 (January 2015)
Abstract We present a new double hohlraum target for the creation of a moderately coupled ( 0.1 < Γ < 1 ) carbon plasma for energy loss and charge state measurements of projectile ions interacting with this plasma. A spherical cavity of 600 μ m in diameter is heated with a 150-J laser pulse ( λ L = 527 nm ) within 1.2 ns to produce a quasi-Planckian X-ray source with a radiation temperature of T r ≈ 100 eV . These X-rays are then used to heat volumetrically two thin carbon foils in a secondary cylindrical hohlraum to a dense plasma state. An axi-symmetric plasma column with a free-electron density of up to 8 × 10^21 cm^- 3 , a temperature of T ≈ 10 eV, and an average ionization degree of Z ≈ 3 is generated. This plasma stays in a dense and an almost uniform state for about 5 ns . Ultimately, such targets are supposed to be used in experiments where a heavy ion beam is launched through the sample plasma, and the ion energy losses as well as the charge distributions are to be measured. The present paper is in a certain sense a symbiotic one, where the theoretical analysis and the experimental results are combined to investigate the basic properties and the prospects of this type of plasma targets.
L. Willingale, S. Nagel, A. Thomas, C. Bellei, R. Clarke, A. Dangor, R. Heathcote, M. Kaluza, C. Kamperidis, S. Kneip, K. Krushelnick, N. Lopes, S. P. D. Mangles, W. Nazarov, P. M. Nilson, and Z. Najmudin
Characterization of laser-driven proton beams from near-critical density targets using copper activation
J. Plasma Phys., 81 :365810102 (January 2015)
Copper activation was used to characterize high-energy proton beam acceleration from near-critical density plasma targets. An enhancement was observed when decreasing the target density, which is indicative for an increased laser-accelerated hot electron density at the rear target-vacuum boundary. This is due to channel formation and collimation of the hot electrons inside the target. Particle-in-cell simulations support the experimental observations and show the correlation between channel depth and longitudinal electric field strength is directly correlated with the proton acceleration.
X. Xie, K. Doblhoff-Dier, H. Xu, S. Roither, M. Schöffler, D. Kartashov, S. Erattupuzha, T. Rathje, G.G. Paulus, K. Yamanouchi, A. Baltuska, S. Gräfe, and M. Kitzler
Controlling Fragmentation Reactions of Polyatomic Molecules with Impulsive Laser Alignment
Springer Proceedings in Physics, 162 :138 (January 2015)
We experimentally and theoretically demonstrate channel-selective control over strong-field induced fragmentation of a polyatomic molecule, acetylene, using impulsive laser alignment as the control mechanism.
D. Bernhardt, C. Brandau, Z. Harman, C. Kozhuharov, S. Böhm, F. Bosch, S. Fritzsche, J. Jacobi, S. Kieslich, H. Knopp, F. Nolden, W. Shi, Z. Stachura, M. Steck, T. Stöhlker, S. Schippers, and A. Müller
Electron-ion collision spectroscopy: Lithium-like xenon ions
Phys. Rev. A, 91 :012710 (January 2015)
The resonant process of dielectronic recombination (DR) has been applied as a spectroscopic tool to investigate intra-L-shell excitations 2s−2pj in Li-like 136Xe51+. The experiments were carried out at the electron cooler of the Experimental Storage Ring of the GSI-Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. The observed center-of-mass energy range (0–505 eV) covers all resonances associated with the 2s+e−→(2p1/2nlj)J and (2p3/2nlj)J DR processes. Energies and strengths of isolated 2p1/2n and 2p3/2n DR-resonance groups were obtained for principal quantum numbers n up to 43 and 36, respectively. The 2s−2p1/2 and 2s−2p3/2 excitation energies were deduced to be 119.816(42) eV and 492.174(52) eV. The excitation energies are compared with previous measurements of other groups and with recent QED calculations. In addition, the experimental spectra and extracted resonance strengths are compared with multiconfiguration Dirac-Fock calculations. Measurements and theory are found to be in good agreement with each other.
M. Kitzler, X. Xie, S. Roither, E. Lötstedt, M. Schöffler, D. Kartashov, G.G. Paulus, A. Iwasaki, A. Baltuska, and K. Yamanouchi
Electronic Pre-determination of Ethylene Fragmentation Dynamics
Springer Proceedings in Physics, 162 :155 (January 2015)
We demonstrate, using ethylene, that controlling lower-valence ionization and field-driven excitation dynamics with ultrashort, intense laser pulses allows steering fragmentation reactions of polyatomic molecules along a certain pathway towards a specific set of fragment ions.
A. Surzhykov, D. Seipt, V. G. Serbo, and S. Fritzsche
Interaction of twisted light with many-electron atoms and ions
Phys. Rev. A, 91 :013403 (January 2015)
The excitation of many-electron atoms and ions by twisted light has been studied within the framework of the density-matrix theory and Dirac's relativistic equation. Special attention is paid to the magnetic sublevel population of excited atomic states as described by means of the alignment parameters. General expressions for the alignment of the excited states are obtained under the assumption that the photon beam, prepared as a coherent superposition of two twisted Bessel states, irradiates a macroscopic target. We demonstrate that for this case the population of excited atoms can be sensitive to both the transverse momentum and the (projection of the) total angular momentum of the incident radiation. While the expressions are general and can be employed to describe the photoexcitation of any atom, independent on its shell structure and number of electrons, we performed calculations for the 3s→3p transition in sodium. These calculations indicate that the “twistedness” of incoming radiation can lead to a measurable change in the alignment of the excited P3/22 state as well as the angular distribution of the subsequent fluorescence emission.
C. Brabetz, S. Busold, T. Cowan, O. Deppert, D. Jahn, O. Kester, M. Roth, D. Schumacher, and V. Bagnoud
Laser-driven ion acceleration with hollow laser beams
Phys. Plasmas, 22 :013105 (January 2015)
The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10^18 W cm^−2 to 10^20 W cm^−2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.
A. Otto, D. Seipt, D. Blaschke, B. Kämpfer, and S. Smolyansky
Lifting shell structures in the dynamically assisted Schwinger effect in periodic fields
Phys. Lett. B, 740 :335 (January 2015)
Abstract The dynamically assisted pair creation (Schwinger effect) is considered for the superposition of two periodic electric fields acting in a finite time interval. We find a strong enhancement by orders of magnitude caused by a weak field with a frequency being a multitude of the strong-field frequency. The strong low-frequency field leads to shell structures which are lifted by the weaker high-frequency field. The resonance type amplification refers to a new, monotonously increasing mode, often hidden in some strong oscillatory transient background, which disappears during the smoothly switching off the background fields, thus leaving a pronounced residual shell structure in phase space.
W. Liu, D. N. Schimpf, T. Eidam, J. Limpert, A. Tünnermann, F. X. Kärtner, and G. Chang
Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses
Opt. Lett., 40 :151 (January 2015)
We demonstrate a pre-chirp managed Yb-doped fiber laser system that outputs 75 MHz, 130 W spectrally broadened pulses, which are compressed by a diffraction-grating pair to 60 fs with average powers as high as 100 W. Fine tuning the pulse chirp prior to amplification leads to high-quality compressed pulses. Detailed experiments and numerical simulation reveal that the optimum pre-chirp group-delay dispersion increases from negative to positive with increasing output power for rod-type high-power fiber amplifiers. The resulting laser parameters are suitable for extreme nonlinear optics applications such as frequency conversion in femtosecond enhancement cavities.
J. Seres, E. Seres, B. Landgraf, B. Aurand, T. Kuehl, and C. Spielmann
Quantum Path Interference and Multiple Electron Scattering in Soft X-Ray High-Order Harmonic Generation
Photonics, 2 :104 (January 2015)
High-order harmonic generation is an important mechanism to generate coherent radiation in the few–100-eV spectral range with ultrashort laser pulses. Moreover, a closer inspection of the measured spectra provides unique information about the underlying physics and allows deriving guidelines for improvements. The long-range modulation of the spectral envelope is linked to phase matching, and we will show how to improve it with a double-pulse excitation scheme. Additionally, the spectrum contains only every fourth harmonic, which can be well explained by the quantum interference of multiple scattered electrons, and two dominant electron trajectories were selected by X-ray parametric interaction.
S. Fritzsche, A. Surzhykov, and A. Volotka
Relativistically prolonged lifetime of the 2s2p 3P0 level of zero nuclear-spin beryllium-like ions
New J. Phys., 17 :103009 ( 2015)
The E1M1 transition rate of the 2s2p\ ³P₀\to 2s²\ ¹S₀ line in beryllium-like ions has been calculated within the framework of relativistic second-order perturbation theory. Both multiconfiguration and quantum-electrodynamical computations have been carried out independently to better understand and test for all major electron–electron correlation contributions in the representation of the initial, intermediate and final states. By comparing the results from these methods, which agree well for all ions along the beryllium isoelectronic sequence, the lifetime of the metastable 2s2p 3P0 level is found to be longer by about 2–3 orders of magnitude for all medium and heavy elements than was estimated previously. This makes the 3P0 level of beryllium-like ions to one of the longest living (low-lying) electronic excitations of a tightly bound system with potential applications for atomic clocks and in astro physics and plasma physics.
F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann
Tm-based fiber-laser system with more than 200  MW peak power
Opt. Lett., 40 :9 (January 2015)
Tm-based fiber-laser systems are an attractive concept for the development of high-performance laser sources in the spectral region around 2 μm wavelength. Here we present a system delivering a pulse-peak power higher than 200 MW in combination with 24 W average power and 120 μJ pulse energy. Key components enabling this performance level are a Tm-doped large-pitch fiber with a mode-field diameter of 65 μm, highly efficient dielectric gratings, and a Tm-based fiber oscillator operating in the stretched-pulse regime.


A. Klenke, S. Hädrich, T. Eidam, J. Rothhardt, M. Kienel, S. Demmler, T. Gottschall, J. Limpert, and A. Tünnermann
22  GW peak-power fiber chirped-pulse-amplification system
Opt. Lett., 39 :6875 (December 2014)
In this Letter, we report on a femtosecond fiber chirped-pulse-amplification system based on the coherent combination of the output of four ytterbium-doped large-pitch fibers. Each single channel delivers a peak power of about 6.2 GW after compression. The combined system emits 200 fs long pulses with a pulse energy of 5.7 mJ at 230 W of average power together with an excellent beam quality. The resulting peak power is 22 GW, which to the best of our knowledge is the highest value directly emitted from any fiber-based laser system.
W. Ma, J. Bin, H. Wang, M. Yeung, C. Kreuzer, M. Streeter, P. Foster, S. Cousens, D. Kiefer, B. Dromey, X. Yan, J. Meyer-ter-Vehn, M. Zepf, and J. Schreiber
Bright Subcycle Extreme Ultraviolet Bursts from a Single Dense Relativistic Electron Sheet
Phys. Rev. Lett., 113 :235002 (December 2014)
Double-foil targets separated by a low density plasma and irradiated by a petawatt-class laser are shown to be a copious source of coherent broadband radiation. Simulations show that a dense sheet of relativistic electrons is formed during the interaction of the laser with the tenuous plasma between the two foils. The coherent motion of the electron sheet as it transits the second foil results in strong broadband emission in the extreme ultraviolet, consistent with our experimental observations.
S. Minardi, C. Milián, D. Majus, A. Gopal, G. Tamošauskas, A. Couairon, T. Pertsch, and A. Dubietis
Energy deposition dynamics of femtosecond pulses in water
Appl. Phys. Lett., 105 :224104 (December 2014)
We exploit inverse Raman scattering and solvated electron absorption to perform a quantitative characterization of the energy loss and ionization dynamics in water with tightly focused near-infrared femtosecond pulses. A comparison between experimental data and numerical simulations suggests that the ionization energy of water is 8 eV, rather than the commonly used value of 6.5 eV. We also introduce an equation for the Raman gain valid for ultra-short pulses that validates our experimental procedure.
A. Bondarevskaya, E. A. Mistonova, K. N. Lyashchenko, O. Yu. Andreev, A. Surzhykov, L. N. Labzowsky, G. Plunien, D. Liesen, F. Bosch, and T. Stöhlker
Method for the production of highly charged ions with polarized nuclei and zero total electron angular momentum
Phys. Rev. A, 90 :064701 (December 2014)
The capture of polarized electrons by H-like ions provides a method for polarizing the nuclei of He-like heavy ions with zero total electron angular momentum in storage rings for high-energy ions. A detailed analysis for Eu-151 ions with nuclear spin I=5/2 predicts a nuclear polarization degree of about 47% already after one passage through a target containing 100% polarized electrons. Almost 50% of the polarized He-like ions are predicted to be in states with zero total electron angular momentum. Such ions were recently considered as the most promising candidates in experiments at storage rings for the search for violations of the fundamental symmetries and for a nuclear and an electron electric dipole moment.