F. Wagner,
J. Hornung,
C. Schmidt,
M. Eckhardt,
M. Roth,
T. Stöhlker,
and V. Bagnoud
Backreflection diagnostics for ultra-intense laser plasma experiments based on frequency resolved optical gating
Rev. Sci. Instrum., 88 :023503 (February 2017)
Backreflection diagnostics for ultra-intense laser plasma experiments based on frequency resolved optical gating
Rev. Sci. Instrum., 88 :023503 (February 2017)
Abstract:
We report on the development and implementation of a time resolved backscatter diagnostics for high power laser plasma experiments at the petawatt-class laser facility PHELIX. Pulses that are backscattered or reflected from overcritical plasmas are characterized spectrally and temporally resolved using a specially designed second harmonic generation frequency resolved optical gating system. The diagnostics meets the requirements made by typical experiments, i.e., a spectral bandwidth of more than 30nm with sub-nanometer resolution and a temporal window of 10ps with 50fs temporal resolution. The diagnostics is permanently installed at the PHELIX target area and can be used to study effects such as laser-hole boring or relativistic self-phase-modulation which are important features of laser-driven particle acceleration experiments.