C. M. Heyl,
S. B. Schoun,
G. Porat,
H. Green,
and J. Ye
A nozzle for high-density supersonic gas jets at elevated temperatures
Rev. Sci. Instrum., 89 :113114 (November 2018)
A nozzle for high-density supersonic gas jets at elevated temperatures
Rev. Sci. Instrum., 89 :113114 (November 2018)
Abstract:
We present the development of a gas nozzle providing high-density gas at elevated temperaturesinside a vacuum environment. Fused silica is used as the nozzle material to allow the placement ofthe nozzle tip in close proximity to an intense, high-power laser beam, while minimizing the risk ofsputtering nozzle tip material into the vacuum chamber. Elevating the gas temperature increases thegas-jet forward velocity, allowing us to replenish the gas volume in the laser-gas interaction regionbetween consecutive laser shots. The nozzle accommodates a 50μm opening hole from which asupersonic gas jet emerges. Heater wires are used to bring the nozzle temperature up to 730 °C, whilea cooling unit ensures that the nozzle mount and the glued nozzle-to-mount connection is kept at atemperature below 50 °C. The presented nozzle design is used for high-order harmonic generationin hot gases using gas backing pressures of up to 124 bars.