J. Deprince,
M. Bautista,
S. Fritzsche,
J. García,
T. Kallman,
C. Mendoza,
P. Palmeri,
and P. Quinet
Plasma-environment effects on K lines of astrophysical interest: III. IPs, K thresholds, radiative rates, and Auger widths in Fe IX - Fe XVI
Astron. Astrophys., 635 :A70 ( 2020)
Plasma-environment effects on K lines of astrophysical interest: III. IPs, K thresholds, radiative rates, and Auger widths in Fe IX - Fe XVI
Astron. Astrophys., 635 :A70 ( 2020)
Abstract:
Aims. In the context of black-hole accretion disks, we aim to compute the plasma-environment effects on the atomic parameters used to model the decay of K-vacancy states in moderately charged iron ions, namely Fe IX - Fe XVI. Methods. We used the fully relativistic multiconfiguration Dirac-Fock method approximating the plasma electron-nucleus and electron-electron screenings with a time-averaged Debye-Hückel potential. Results. We report modified ionization potentials, K-threshold energies, wavelengths, radiative emission rates, and Auger widths for plasmas characterized by electron temperatures and densities in the ranges 105-107 K and 1018-1022 cm-3. Conclusions. This study confirms that the high-resolution X-ray spectrometers onboard the future XRISM and Athena space missions will be capable of detecting the lowering of the K edges of these ions due to the extreme plasma conditions occurring in accretion disks around compact objects.