Referierte Publikationen

2020

R. Klas, W. Eschen, A. Kirsche, J. Rothhardt, and J. Limpert
Generation of coherent broadband high photon flux continua in the XUV with a sub-two-cycle fiber laser
Opt. Express, 28 :6188 (March 2020)
Abstract:
High harmonic sources can provide ultrashort pulses of coherent radiation in the XUV and X-ray spectral region. In this paper we utilize a sub-two-cycle femtosecond fiber laser to efficiently generate a broadband continuum of high-order harmonics between 70 eV and 120 eV. The average power delivered by this source ranges from > 0.2 µW/eV at 80 eV to >0.03 µW/eV at 120 eV. At 92 eV (13.5 nm wavelength), we measured a coherent record-high average power of 0.1 µW/eV, which corresponds to 7 · 109 ph/s/eV, with a long-term stability of 0.8% rms deviation over a 20 min time period. The presented approach is average power scalable and promises up to 1011 ph/s/eV in the near future. With additional carrier-envelop phase control even isolated attosecond pulses can be expected from such sources. The combination of high flux, high photon energy and ultrashort (sub-) fs duration will enable photon-hungry time-resolved and multidimensional studies.
Y. X. Zhang, S. Rykovanov, M. Shi, C. L. Zhong, X. T. He, B. Qiao, and M. Zepf
Giant Isolated Attosecond Pulses from Two-Color Laser-Plasma Interactions
Phys. Rev. Lett., 124 :114802 (March 2020)
Abstract:
A new regime in the interaction of a two-color (ω,2ω) laser with a nanometer-scale foil is identified, resulting in the emission of extremely intense, isolated attosecond pulses—even in the case of multicycle lasers. For foils irradiated by lasers exceeding the blow-out field strength (i.e., capable of fully separating electrons from the ion background), the addition of a second harmonic field results in the stabilization of the foil up to the blow-out intensity. This is then followed by a sharp transition to transparency that essentially occurs in a single optical cycle. During the transition cycle, a dense, nanometer-scale electron bunch is accelerated to relativistic velocities and emits a single, strong attosecond pulse with a peak intensity approaching that of the laser field.
C. Stihler, C. Jauregui, S. Kholaif, and J. Limpert
Intensity noise as a driver for transverse mode instability in fiber amplifiers
PhotoniX, 1 :2041 (March 2020)
Abstract:
The effect of transverse mode instability (TMI) is currently the main limitation for the further average-power scaling of fiber laser systems with diffraction-limited beam quality. In this work a main driving force for TMI in fiber amplifiers is identified. Our experiments and simulations illustrate that the performance of fiber laser systems in terms of their diffraction-limited output power can be significantly reduced when the pump or seed radiation exhibit intensity noise. This finding emphasizes the fact that the TMI threshold is not only determined by the active fiber but, rather, by the whole system. In the experiment an artificially applied pump intensity-noise of 2.9% led to a reduction of the TMI threshold of 63%, whereas a similar seed intensity-noise decreased it by just 13%. Thus, even though both noise sources have an impact on the TMI threshold, the pump intensity-noise can be considered as the main driver for TMI in saturated fiber amplifiers. Additionally, the work unveils that the physical origin of this behavior is linked to the noise transfer function in saturated fiber amplifiers. With the gained knowledge and the experimental and theoretical results, it can be concluded that a suppression of pump-noise frequencies below 20 kHz could strongly increase the TMI threshold in high-power fiber laser systems.
V. P. Kosheleva, A. V. Volotka, D. A. Glazov, and S. Fritzsche
Many-electron effects in the hyperfine splitting of lithiumlike ions
Phys. Rev. Research, 2 :013364 (March 2020)
Abstract:
The rigorous QED evaluation of the one- and two-photon exchange corrections to the ground-state hyperfine splitting in Li-like ions is presented for the wide range of nuclear charge number Z = 7-82. The calculations are carried out in the framework of the extended Furry picture, i.e., with the inclusion of the effective local screening potential in the zeroth-order approximation. The interelectronic-interaction contributions of the third and higher orders are taken into account in the framework of the Breit approximation employing the recursive perturbation theory. In comparison to the previous theoretical calculations, the accuracy of the interelectronic-interaction contributions to the ground-state hyperfine splitting in Li-like ions is substantially improved.
Y. Zhang, D. Zille, D. Hoff, P. Wustelt, D. Würzler, M. Möller, A. M. Sayler, and G. Paulus
Observing the Importance of the Phase-Volume Effect for Few-Cycle Light-Matter Interactions
Phys. Rev. Lett., 124 :133202 (March 2020)
Abstract:
The spatially dependent phase distribution of focused few-cycle pulses, i.e., the focal phase, is much more complex than the well-known Gouy phase of monochromatic beams. As the focal phase is imprinted on the carrier-envelope phase (CEP), for accurate modeling and interpretation of CEP-dependent few-cycle laser-matter interactions, both the coupled spatially dependent phase and intensity distributions must be taken into account. In this Letter, we demonstrate the significance of the focal phase effect via comparison of measurements and simulations of CEP-dependent photoelectron spectra. Moreover, we demonstrate the impact of this effect on few-cycle light-matter interactions as a function of their nonlinear intensity dependence to answer the general question: if, when, and how much should one be concerned about the focal phase?
B. Böning, W. Paufler, and S. Fritzsche
Polarization-dependent high-intensity Kapitza-Dirac effect in strong laser fields
Phys. Rev. A, 101 :031401 (March 2020)
Abstract:
We study the deflection of photoelectrons in intense elliptically polarized standing light waves, known as the high-intensity Kapitza-Dirac effect. In order to compute the longitudinal momentum transfer to the photoelectron in above-threshold ionization, we utilize a complete description of the quantum dynamics in the spatially dependent field of the standing light wave. We propose experimental conditions under which low-energy photoelectrons can be generated with remarkably high longitudinal momenta that can be controlled via the polarization of the standing wave. We expect that future experimental realizations will provide additional insights into the momentum transfer in intense laser-atom interactions.
Y. Ma, D. Seipt, A. E. Hussein, S. Hakimi, N. F. Beier, S. B. Hansen, J. Hinojosa, A. Maksimchuk, J. Nees, K. Krushelnick, A. G. R. Thomas, and F. Dollar
Polarization-Dependent Self-Injection by Above Threshold Ionization Heating in a Laser Wakefield Accelerator
Phys. Rev. Lett., 124 :114801 (March 2020)
Abstract:
We report on the experimental observation of a decreased self-injection threshold by using laser pulses with circular polarization in laser wakefield acceleration experiments in a nonpreformed plasma, compared to the usually employed linear polarization. A significantly higher electron beam charge was also observed for circular polarization compared to linear polarization over a wide range of parameters. Theoretical analysis and quasi-3D particle-in-cell simulations reveal that the self-injection and hence the laser wakefield acceleration is polarization dependent and indicate a different injection mechanism for circularly polarized laser pulses, originating from larger momentum gain by electrons during above threshold ionization. This enables electrons to meet the trapping condition more easily, and the resulting higher plasma temperature was confirmed via spectroscopy of the XUV plasma emission.
P. Balla, A. B. Wahid, I. Sytcevich, C. Guo, A.-L. Viotti, l. Silletti, A. Cartella, S. Ališauskas, H. Tavakol, U. Grosse-Wortmann, A. Schönberg, M. Seidel, A. Trabattoni, B. Manschwetus, T. Lang, F. Calegari, A. Couairon, A. LHuillier, C. Arnold, I. Hartl, and C. M. Heyl
Post-compression of picosecond pulses into the few-cycle regime
Opt. Lett., 45 :2572 (March 2020)
Abstract:
In this work, we demonstrate post-compression of 1.2 picosecond laser pulses to 13 fs via gas-based multipass spectral broadening. Our results yield a singlestage compression factor of about 40 at 200 W in-burst average power and a total compression factor >90 at reduced power. The employed scheme represents a route towards compact few-cycle sources driven by industrial-grade Yb:YAG lasers at high average power.
M. Afshari, J. Hornung, A. Kleinschmidt, P. Neumayer, D. Bertini, and V. Bagnoud
Proton acceleration via the TNSA mechanism using a smoothed laser focus
AIP Adv., 10 :035023 (March 2020)
Abstract:
In this work, we present the results of an experiment aiming at proton acceleration using a focus with a homogeneous intensity distribution, called smoothed focus. To achieve this goal, we implemented a phase plate before the pre-amplifier of the Petawatt High-Energy Laser for Heavy Ion EXperiments laser facility. The phase plate was used for the first time at a high-power short-pulse laser. Demonstrating a low divergent ion beam was the main goal of this work. Numerical simulations using the particle-in-cell code Extendable PIC Open Collaboration estimated a 2–5 times reduction in the angular divergence of the proton beam using a phase plate due to a smoother sheath at the rear side of the target. However, the reduction in the angular divergence was not sensible according to the experimental data. A positive point is that the spectrum of protons that are generated with the smoothed beam is shifted toward lower energies, provided that the laser absorption is kept in check, compared to the Gaussian proton spectrum. Moreover, the number of protons that are generated with the smoothed beam is higher than the ones generated with the Gaussian beam.
F. Tuitje, M. Zürch, T. Helk, J. Gautier, F. Tissandier, J.-P. Goddet, E. Oliva, A. Guggenmos, U. Kleineberg, H. Stiel, S. Sebban, and C. Spielmann
Ptychography and single-shot nanoscale imaging with plasma-based laser sources
Springer Proc. Phys., 241 :155 (March 2020)
Abstract:
We report the direct wavefront characterization of an intense ultrafast high-harmonic seeded soft X-ray laser at 32.8 nm wavelength and monitor the exit of the laser plasma amplifier depending on the arrival time of the seed pulses with respect to pump pulses. For the wavefront measurement in phase and intensity, we used high-resolution ptychography. After propagating the wavefront back to the source, we are able to observe the rear end of the plasma amplifier. We compare the characteristics of the seeded soft X-ray Laser to an unseeded one and find an increasing beam stability and lateral coherence important for lensless imaging techniques.
M. B. Schwab, E. Siminos, T. Heinemann, D. Ullmann, F. Karbstein, S. Kuschel, A. Sävert, M. Yeung, D. Hollatz, A. Seidel, J. Cole, S. P. D. Mangles, B. Hidding, M. Zepf, S. Skupin, and M.C. Kaluza
Visualization of relativistic laser pulses in underdense plasma
Phys. Rev. Accel. Beams, 23 :032801 (March 2020)
Abstract:
We present experimental evidence of relativistic electron-cyclotron resonances (RECRs) in the vicinity of the relativistically intense pump laser of a laser wakefield accelerator (LWFA). The effects of the RECRs are visualized by imaging the driven plasma wave with a few-cycle, optical probe in transverse geometry. The probe experiences strong, spectrally dependent and relativistically modified birefringence in the vicinity of the pump that arises due to the plasma electrons’ relativistic motion in the pump’s electromagnetic fields. The spectral birefringence is strongly dependent on the local magnetic field distribution of the pump laser. Analysis and comparison to both 2D and 3D particle-in-cell simulations confirm the origin of the RECR effect and its appearance in experimental and simulated shadowgrams of the laser-plasma interaction. The RECR effect is relevant for any relativistic, magnetized plasma and in the case of LWFA could provide a nondestructive, in situ diagnostic for tracking the evolution of the pump’s intensity distribution with propagation through tenuous plasma.
J. Hofbrucker, A. V. Volotka, and S. Fritzsche
Breakdown of the electric dipole approximation at Cooper minima in direct two-photon ionisation
Sci. Rep., 10 :3617 (February 2020)
Abstract:
We predict breakdown of the electric dipole approximation at nonlinear Cooper minimum in direct two-photon K–shell atomic ionisation by circularly polarised light. According to predictions based on the electric dipole approximation, we expect that tuning the incident photon energy to the Cooper minimum in two-photon ionisation results in pure depletion of one spin projection of the initially bound 1s electrons, and hence, leaves the ionised atom in a fully oriented state. We show that by inclusion of electric quadrupole interaction, dramatic drop of orientation purity is obtained. The low degree of the remaining ion orientation provides a direct access to contributions of the electron-photon interaction beyond the electric dipole approximation in the two-photon ionisation of atoms and molecules. The orientation of the photoions can be experimentally detected either directly by a Stern-Gerlach analyzer, or by means of subsequent Kα fluorescence emission, which has the information about the ion orientation imprinted in the polarisation of the emitted photons.
N. Stallkamp, S. Ringleb, B. Arndt, M. Kiffer, S. Kumar, T. Morgenroth, G.G. Paulus, W. Quint, T. Stöhlker, and M. Vogel
HILITE—A tool to investigate interactions of matter and light
X-Ray Spec., 49 :188 (February 2020)
Abstract:
Detailed investigations of laser–ion interactions require well‐defined ion targets and detection techniques for high‐sensitivity measurements of reaction educts and products. To this end, we have designed and built the High‐Intensity Laser‐Ion Trap Experiment Penning trap setup, which features various ion‐target preparation techniques including selection, cooling, compression, and positioning as well as destructive and non‐destructive measurement techniques to determine the number of stored ions for all charge states individually and simultaneously. We have recently performed first commissioning experiments of ion deceleration and dynamic ion capture with highly charged ion bunches from an electron beam ion source. We have characterized our single‐pass non‐destructive ion counter in detail and were able to determine the ion velocity as well as the number of ions from the signals acquired.
N. Dimitrov, M. Zhekova, G. Paulus, and A. Dreischuh
Inverted field interferometer for measuring the topological charges of optical vortices carried by short pulses
Opt. Commun., 456 :124530 (February 2020)
Abstract:
In this work, we present an improved technique for measuring both the magnitude and sign of the topological charge of input optical vortex beams carried by short laser pulses. Numerical simulations and experimental evidences for the interference signal obtainable at the output of an inverted field interferometer (IFI) valid for both continuous wave and femtosecond optical vortex beams and pulses with an eventual pulse front tilt are in an excellent agreement. An IFI also appears to be a valuable tool for calibrating a built-in variable delay line and for estimating an eventual pulse front tilt of the input ultrashort laser pulses without any realignments. As a trivial side effect, by blocking alternatively one of the two arms of the interferometer, one can use OV beams/pulses of opposite TCs, which are well located in the plane of a desired target, eventually — at precisely known time delays.
A. Perry-Sassmannshausen, T. Buhr, A. Borovik, M. Martins, S. Reinwardt, S. Ricz, S. Stock, F. Trinter, A. Müller, S. Fritzsche, and S. Schippers
Multiple Photodetachment of Carbon Anions via Single and Double Core-Hole Creation
Phys. Rev. Lett., 124 :083203 (February 2020)
Abstract:
We report on new measurements of m-fold photodetachment (m=2-5) of carbon anions via K-shell excitation and ionization. The experiments were carried out employing the photon-ion merged-beams technique at a synchrotron light source. While previous measurements were restricted to double detachment (m=2) and to just the lowest-energy K-shell resonance at about 282 eV, our absolute experimental m-fold detachment cross sections at photon energies of up to 1000 eV exhibit a wealth of new thresholds and resonances. We tentatively identify these features with the aid of detailed atomic-structure calculations. In particular, we find unambiguous evidence for fivefold detachment via double K-hole production.
O. Forstner, D. Bemmerer, T. Cowan, R. Dressler, A. Junghans, D. Schumann, T. Stöhlker, T. Szücs, A. Wagner, and K. Zuber
Opportunities for measurements of astrophysical-relevant alpha-capture reaction rates at CRYRING@ESR
X-Ray Spec., 49 :129 (February 2020)
Abstract:
The heavy-ion storage ring CRYRING@ESR has recently been installed and commissioned at GSI as one of the first installations of the upcoming Facility for Antiproton and Ion Research (FAIR). It is designed to store highly charged ions in the energy range between 300?keV/u and about 10?MeV/u. It will incorporate a gas-jet target providing high-density jets of, among other gases, hydrogen and helium. This will allow to study alpha-capture reaction rates of astrophysical interest in the energy range of the Gamow window for core-collapse supernovae. Special interest comes from the long-lived radio-isotope 44Ti (t1/2?=?58.9?years), which is supposed to be produced in the alpha-rich freeze-out during such an event. The nucleosynthesis of this isotope is of great interest, as the amount of material produced can be estimated by direct observation in remnants of recent supernovae. The disagreements between the observations and the estimations from astrophysical models show the need of more experimental data for the production and consumption reactions in the energy range of a core-collapse supernova. In this article, we will describe the proposed method of injecting beams of 44Ti into CRYRING@ESR and performing the actual reaction rate measurements.
P.-M. Hillenbrand, S. Hagmann, M. Groshev, D. Banaś, E. Benis, C. Brandau, E. De Filippo, O. Forstner, J. Glorius, R. Grisenti, A. Gumberidze, D. Guo, B. Hai, M. Herdrich, M. Lestinsky, Y. Litvinov, E. Pagano, N. Petridis, M. Sanjari, D. Schury, U. Spillmann, S. Trotsenko, M. Vockert, G. Weber, V. Yerokhin, and T. Stöhlker
Radiative electron capture to the continuum in U89+ + N2 collisions: Experiment and theory
Phys. Rev. A, 101 :022708 (February 2020)
Abstract:
For U89+ projectiles colliding at a beam energy of 75.91 MeV/u with a N2 target, we present a coincidence measurement between the cusp electrons emitted under an angle of 0° with respect to the projectile beam and the photons emitted under a polar angle of 90°. This radiative-electron-capture-to-continuum cusp directly probes the theory of electron-nucleus bremsstrahlung up to the high-energy endpoint in inverse kinematics. In the present study, significant improvement with respect to the experimental accuracy has been achieved, resulting in a finer agreement between experimental and theoretical results.
N. A. Tahir, P. Neumayer, I. V. Lomonosov, A. Shutov, V. Bagnoud, A. R. Piriz, S. A. Piriz, and C. Deutsch
Studies of equation of state properties of high-energy-density matter generated by intense ion beams at the facility for antiprotons and ion research
Phys. Rev. E, 101 :023202 (February 2020)
Abstract:
The work presented in this paper shows with the help of two-dimensional hydrodynamic simulations that intense heavy-ion beams are a very efficient tool to induce high energy density (HED) states in solid matter. These simulations have been carried out using a computer code BIG2 that is based on a Godunov-type numerical algorithm. This code includes ion beam energy deposition using the cold stopping model, which is a valid approximation for the temperature range accessed in these simulations. Different phases of matter achieved due to the beam heating are treated using a semiempirical equation-of-state (EOS) model. To take care of the solid material properties, the Prandl-Reuss model is used. The high specific power deposited by the projectile particles in the target leads to phase transitions on a timescale of the order of tens of nanosecond, which means that the sample material achieves thermodynamic equilibrium during the heating process. In these calculations we use Pb as the sample material that is irradiated by an intense uranium beam. The beam parameters including particle energy, focal spot size, bunch length, and bunch intensity are considered to be the same as the design parameters of the ion beam to be generated by the SIS100 heavy-ion synchrotron at the Facility for Antiprotons and Ion Research (FAIR), at Darmstadt. The purpose of this work is to propose experiments to measure the EOS properties of HED matter including studies of the processes of phase transitions at the FAIR facility. Our simulations have shown that depending on the specific energy deposition, solid lead will undergo phase transitions leading to an expanded hot liquid state, two-phase liquid-gas state, or the critical parameter regime. In a similar manner, other materials can be studied in such experiments, which will be a very useful addition to the knowledge in this important field of research.
G. Weber, A. Gumberidze, M. Herdrich, R. Märtin, U. Spillmann, A. Surzhykov, D. Thorn, S. Trotsenko, N. Petridis, C. Fontes, and T. Stöhlker
Towards a determination of absolute cross sections for projectile excitation of hydrogen‐like uranium in collisions with neutral atoms
X-Ray Spec., 49 :239 (February 2020)
Abstract:
Recently, the contribution of the generalized Breit interaction to electron impact ionization was identified for the first time in a high‐Z system, namely, hydrogen‐like uranium. This study employed a measurement of the relative population of the j = 1/2 and j = 3/2 states of the L shell by projectile excitation in collision of U91+ with hydrogen and nitrogen targets. However, for a rigorous test of ion–atom collision theory, also the absolute excitation cross sections are of great importance. In the present work, we report on our efforts to extend the previous study to a determination of the absolute projectile excitation cross sections by normalization to the well‐known radiative electron capture process.
R. Sanchez, A. Braeuning-Demian, J. Glorius, S. Hagmann, P.-M. Hillenbrand, A. Kalinin, T. Köhler, Y. A. Litvinov, N. Petridis, S. Sanjari, U. Spillmann, and T. Stöhlker
Towards experiments with highly charged ions at HESR
X-Ray Spec., 49 :33 (February 2020)
Abstract:
The atomic physics collaboration SPARC is a part of the APPA pillar at the future Facility for Antiproton and Ion Research. It aims at atomic‐physics research across virtually the full range of atomic matter. An emphasis of this contribution are the atomic physics experiments addressing the collision dynamics in strong electro‐magnetic fields as well as the fundamental interactions between electrons and heavy nuclei at the HESR. Here we give a short overview about the central instruments for SPARC experiments at this storage ring.
V. Dinu, and G. Torgrimsson
Trident process in laser pulses
Phys. Rev. D, 101 :056017 (February 2020)
Abstract:
We study the trident process in laser pulses. We provide exact numerical results for all contributions, including the difficult exchange term. We show that all terms are in general important for a short pulse. For a long pulse, we identify a term that gives the dominant contribution even if the intensity is only moderately high, a0≳1, which is an experimentally important regime where the standard locally constant field (LCF) approximation cannot be used. We show that the spectrum has a richer structure at a0∼1, compared to the LCF regime a0≫1. We study the convergence to LCF as a0 increases and how this convergence depends on the momentum of the initial electron. We also identify the terms that dominate at high energy.
M. Müller, C. Aleshire, A. Klenke, E. Haddad, F. Légaré, A. Tünnermann, and J. Limpert
10.4 kW coherently combined ultrafast fiber laser
Opt. Lett., 45 :3083 ( 2020)
Abstract:
An ultrafast laser delivering 10.4 kW average output power based on a coherent combination of 12 step-index fiber amplifiers is presented. The system emits close-to-transform-limited 254 fs pulses at an 80 MHz repetition rate, and has a high beam quality (M2 ≤ 1.2) and a low relative intensity noise of 0.56% in the frequency range of 1 Hz to 1 MHz. Automated spatiotemporal alignment allows for hands-off operation.
S. Hagmann, P. Hillenbrand, Y. A. Litvinov, U. Spillmann, and T. Stöhlker
A magnetic spectrometer for electron‐positron pair spectroscopy in storage rings
X-Ray Spec., 49 :115 (January 2020)
Abstract:
We report an analysis of electron‐optical properties of a toroidal magnetic sector spectrometer and examine parameters for its implementation in a relativistic heavy‐ion storage ring, for example the High Energy Storage ring (HESR) at the future Facility for Antiproton and Ion Research (FAIR) facility. For studies of free–free pair production in heavy‐ion atom collisions, this spectrometer exhibits very high efficiencies for coincident e+–e− pair spectroscopy over a wide range of momenta of emitted lepton pairs. The high coincidence efficiency of the spectrometer is the key for stringent tests of theoretical predictions for the phase space correlation of lepton vector momenta in free–free pair production.
H. Gies, and J. Ziebell
Asymptotically safe QED
Eur. Phys. J. C, 80 :607 ( 2020)
Abstract:
High-energy completeness of quantum electrodynamics (QED) can be induced by an interacting ultraviolet fixed point of the renormalization flow. We provide evidence for the existence of two of such fixed points in the subspace spanned by the gauge coupling, the electron mass and the Pauli spin-field coupling. Renormalization group trajectories emanating from these fixed points correspond to asymptotically safe theories that are free from the Landau pole problem. We analyze the resulting universality classes defined by the fixed points, determine the corresponding critical exponents, study the resulting phase diagram, and quantify the stability of our results with respect to a systematic expansion scheme. We also compute high-energy complete flows towards the long-range physics. We observe the existence of a renormalization group trajectory that interconnects one of the interacting fixed points with the physical low-energy behavior of QED as measured in experiment. Within pure QED, we estimate the crossover from perturbative QED to the asymptotically safe fixed point regime to occur somewhat above the Planck scale but far below the scale of the Landau pole.
V. Zaytsev, A. Surzhykov, V. Serbo, V. Kosheleva, M. Groshev, V. Yerokhin, V. Shabaev, and T. Stöhlker
Atomic processes with twisted electrons
J. Phys.: Conf. Ser., 1412 :052013 ( 2020)
Abstract:
The present status of the fully-relativistic nonperturbative calculations of the fundamental atomic processes with twisted electrons is presented. In particular, the elastic (Mott) scattering, the radiative recombination, and for the very first time, the Bremsstrahlung processes are considered. The electron-ion interaction is accounted for in a nonperturbative manner, that allows obtaining reliable results for heavy systems. We investigate the influence of the "twistedness" of the incoming electron on the angular and polarization properties of the emitted electrons and photons for the elastic and inelastic scattering, respectively. It is found that these properties exhibit a strong dependence on the opening angle of the vortex electron beam in all processes considered.