W. Paufler,
B. Böning,
and S. Fritzsche
Strong-field ionization with twisted laser pulses
Phys. Rev. A, 97 :043418 (April 2018)
Strong-field ionization with twisted laser pulses
Phys. Rev. A, 97 :043418 (April 2018)
Abstract:
We apply quantum trajectory Monte Carlo computations in order to model strong-field ionization of atoms by twisted Bessel pulses and calculate photoelectron momentum distributions (PEMD). Since Bessel beams can be considered as an infinite superposition of circularly polarized plane waves with the same helicity, whose wave vectors lie on a cone, we compared the PEMD of such Bessel pulses to those of a circularly polarized pulse. We focus on the momentum distributions in propagation direction of the pulse and show how these momentum distributions are affected by experimental accessible parameters, such as the opening angle of the beam or the impact parameter of the atom with regard to the beam axis. In particular, we show that we can find higher momenta of the photoelectrons, if the opening angle is increased.