Sonstige Publikationen

2019

D. Hoff, M. Krueger, L. Maisenbacher, A. Sayler, P. Hommelhoff, and G. Paulus
Tracing the phase of focused broadband laser pulses
, XXI International Conference on Ultrafast Phenomena 2018 (UP 2018)Volume13, Page 947 ( 2019)
DOI
M.C. Kaluza
Ultrafast Plasma Imaging
Springer Proc. Phys., 231 :165 ( 2019)
K. Huetten, M. Mittermair, S. Stock, R. Beerwerth, V. Shirvanyan, J. Riemensberger, A. Duensing, R. Heider, M. Wagner, A. Guggenmos, S. Fritzsche, N. Kabachnik, R. Kienberger, and B. Bernhardt
Ultrafast quantum control of ionization dynamics
XXI International Conference on Ultrafast Phenomena 2018 (UP 2018) ( 2019)
DOI

2017

J. Körner, J. Reiter, T. Lühder, J. Hein, V. Jambunathan, A. Lucianetti, T. Mocek, and M.C. Kaluza
Temperature dependent spectroscopic characterization of Tm:YAG crystals as potential laser medium for pulsed high energy laser amplifiers
SPIE Proceedings Volume 10238, High-Power, High-Energy, and High-Intensity Laser Technology III (May 2017)
DOI
J. Limpert
High Power Fiber Lasers
Optical Fiber Communication Conference 2017 (March 2017)
DOI
S. S. Bulanov, S. V. Bulanov, T. Zh. Esirkepov, M. Kando, S. Rykovanov, F. Pegoraro, C. B. Schroeder, E. Esarey, and W. P. Leemans
Strong field electrodynamics of a thin foil
, AIP Conference Proceedings 1812Volume1812, Page 090001 (March 2017)
DOI
V. Tympel, J. Golm, R. Neubert, P. Seidel, M. Schmelz, R. Stolz, V. Zakosarenko, F. Kurian, M. Schwickert, T. Sieber, and T. Stöhlker
The Next Generation of Cryogenic Current Comparators for Beam Monitoring (March 2017)
File:pdfhttp://accelconf.web.cern.ch/AccelConf/ibic2016/papers/proceed.pdf
M. Mueller, M. Kienel, A. Klenke, T. Gottschall, E. Shestaev, M. Plötner, J. Limpert, and A. Tünnermann
12 mJ pulse energy 8-channel divided-pulse ultrafast fiber-laser system
SPIE Proceedings Volume 10083, Fiber Lasers XIV: Technology and Systems (February 2017)
DOI
C. Stihler, C. Jauregui, H.-J. Otto, J. Limpert, and A. Tünnermann
Controlling mode instabilities at 628 W average output power in an Yb-doped rod-type fiber amplifier by active modulation of the pump power
SPIE Proceedings Volume 10083, Fiber Lasers XIV: Technology and Systems (February 2017)
DOI
H. Stark, M. Müller, M. Kienel, A. Klenke, J. Limpert, and A. Tünnermann
Divided-pulse amplification with fiber-coupled electro-optic modulators
SPIE Proceedings Volume 10083, Fiber Lasers XIV: Technology and Systems (February 2017)
DOI
C. Stihler, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann
Experimental investigation of transverse mode instabilities in a double-pass Yb-doped rod-type fiber amplifier
SPIE Proceedings Volume 10083, Fiber Lasers XIV: Technology and Systems (February 2017)
DOI
M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann
High-average power 4 GW pulses with sub-8 optical cycles from a Tm-doped fiber laser driven nonlinear pulse compression stage
SPIE Proceedings Volume 10083, Fiber Lasers XIV: Technology and Systems (February 2017)
DOI
K. Mecseki, H. T. Olgun, M. Windeler, M. Schulz, R. Riedel, F. Tavella, and M. J. Prandolini
Investigation of the critical parameters for CEP stabilized high power 1.5μm OPCPA
SPIE Proceedings Volume 10082, Solid State Lasers XXVI: Technology and Devices (February 2017)
DOI
C. Jauregui, M. Müller, M. Kienel, F. Emaury, C. J. Saraceno, J. Limpert, U. Keller, and A. Tünnermann
Optimizing the noise characteristics of high-power fiber laser systems
SPIE Proceedings Volume 10083, Fiber Lasers XIV: Technology and Systems (February 2017)
DOI
F. Stutzki, C. Gaida, M. Gebhardt, C. Jauregui, J. Limpert, A. Tünnermann, and I. Pupeza
Self-protecting nonlinear compression in a solid fiber for long-term stable ultrafast lasers at 2 µm wavelength
SPIE Proceedings Volume 10083, Fiber Lasers XIV: Technology and Systems (February 2017)
DOI
C. Jauregui, H.-J. Otto, C. Stihler, J. Limpert, and A. Tünnermann
The impact of core co-dopants on the mode instability threshold of high-power fiber laser systems
SPIE Proceedings Volume 10083, Fiber Lasers XIV: Technology and Systems (February 2017)
DOI
C. Gaida, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
Towards sub-100 fs multi-GW pulses directly emitted from a Thulium-doped fiber CPA system
SPIE Proceedings Volume 10083, Fiber Lasers XIV: Technology and Systems (February 2017)
DOI

2016

F. Karbstein
The quantum vacuum in electromagnetic fields: From the Heisenberg-Euler effective action to vacuum birefringence (December 2016)
File:pdfhttps://inspirehep.net/record/1501006/files/arXiv:1611.09883.pdf
D. Bernhardt, C. Brandau, Z. Harman, C. Kozhuharov, S. Böhm, F. Bosch, S. Fritzsche, J. Jacobi, S. Kieslich, H. Knopp, F. Nolden, W. Shi, Z. Stachura, M. Steck, T. Stöhlker, S. Schippers, and A. Müller
Erratum: Electron-ion collision spectroscopy: Lithium-like xenon ions [Phys. Rev. A 91, 012710 (2015)]
Phys. Rev. A, 94 :029903 (August 2016)
Abstract:
*

2015

S. Schmidt, U. Lippmann, M. M. Guenther, and H. Gross
Diffraction effects in laser beam shaping systems
Proc. SPIE, 9626 :962610 (September 2015)
Abstract:
In modern laser-based ion acceleration systems, the field distribution of the focused laser beam at the position of the target strongly influences the overall characteristics of the resulting ion beam. To obtain an unidirectional and quasi mono-energetic ion beam, a flat-top field distribution of the focused laser beam is optimal. This can only be achieved, by using a beam-profiling system that reshapes the incident laser beam into an Airy-shaped field distribution in the far field. Here, we present an extensive design study of such a beam-profiling system based on two free-form mirrors. In order to realize the rings of zero intensity, corresponding to the roots of the Airy-function, strong curvature peaks on the first mirror are necessary. Additionally, the alternating phase in between these rings can only be achieved with grooves on the second mirror. These aspects actually raise the question, if the used purely geometric optical modeling approach is still valid. Therefore, our design study is entirely accompanied with wave-optical simulations to identify influences of diffraction within the beam profiling system. We find that especially the grooves on the second mirror are mandatory, not only to ensure the alternating phase, but also to realize the roots of zero intensity of the Airy-function. On the other hand, these grooves cause diffraction effects in the beam-profiling system that slightly degrade the at-top focal field. These influences are in the range of a few percent and cannot be further avoided.

2014

C. Spielmann
Electrons take the fast track through silicon
Science, 346 :1293 (December 2014)
Abstract:
The photoelectric effect, the emission of electrons from a metal surface after absorbing light, was explained by Einstein's model, where light particles (photons) must have a minimum energy (frequency) to ionize atoms. The number of excited atoms is proportional to the intensity (the number of photons delivered). However, when the light is supplied by very intense, very fast pulses from lasers, the number of ionized atoms will depend on the electric field strength - the amplitude of the light seen as an electromagnetic wave. This change occurs because ionization occurs via quantum tunneling through the relevant energy barrier during a short time window near the maxima of the electric field. Isolated attosecond pulses recently enabled studies of the dynamics of tunneling ionization of atoms in gases. On page 1348 of this issue, Schultze et al. experimentally show that atoms in a solid are also excited via the tunneling process.
M. Kaluza
Surfen auf der Plasmawelle
Phys. Unserer Zeit, 45 :274 (November 2014)
Abstract:
Hochleistungslaser ermöglichen es inzwischen, relativistische Elektronenpulse mit bemerkenswerten Eigenschaften zu erzeugen. Neben der äußerst kurzen Beschleunigungslänge sind vor allem die kleine Quellgröße und auch die kurze Pulsdauer interessant. Mit diesen Elektronenpulsen lässt sich zudem elektromagnetische Sekundärstrahlung im Kiloelektronenvolt-Bereich erzeugen. Mit dieser Röntgenstrahlung würden auch Universitäten relativ kompakte Röntgenquellen zur Verfügung stehen, mit denen sich Effekte beobachten lassen, die auf äußerst kurzen räumlichen und zeitlichen Skalen ablaufen. Momentan ist diese Art von Forschung nur an großen, konventionellen Synchrotron-Beschleunigern möglich.
M. Zürch, S. Foertsch, M. Matzas, K. Pachmann, R. Kuth, and C. Spielmann
Apparatus and fast method for cancer cell classification based on high harmonic coherent diffraction imaging in reflection geometry
Proc. SPIE, 9033 :1 (March 2014)
Abstract:
In cancer treatment it is highly desirable to identify and /or classify individual cancer cells in real time. Nowadays, the standard method is PCR which is costly and time-consuming. Here we present a different approach to rapidly classify cell types: we measure the pattern of coherently diffracted extreme ultraviolet radiation (XUV radiation at 38nm wavelength), allowing to distinguish different single breast cancer cell types. The output of our laser driven XUV light source is focused onto a single unstained and unlabeled cancer cell, and the resulting diffraction pattern is measured in reflection geometry. As we will further show, the outer shape of the object can be retrieved from the diffraction pattern with sub-micron resolution. For classification it is often not necessary to retrieve the image, it is only necessary to compare the diffraction patterns which can be regarded as a spatial fingerprint of the specimen. For a proof-of-principle experiment MCF7 and SKBR3 breast cancer cells were pipetted on gold-coated silica slides. From illuminating each single cell and measuring a diffraction pattern we could distinguish between them. Owing to the short bursts of coherent soft x-ray light, one could also image temporal changes of the specimen, i.e. studying changes upon drug application once the desired specimen is found by the classification method. Using a more powerful laser, even classifying circulating tumor cells (CTC) at a high throughput seems possible. This lab-sized equipment will allow fast classification of any kind of cells, bacteria or even viruses in the near future.
B. Zielbauer, B. Ecker, P. Neumayer, K. Cassou, S. Daboussi, O. Guilbaud, S. Kazamias, D. Ros, T. Kuehl, U. Eisenbarth, S. Goette, D. Winters, V. Bagnoud, and T. Stöhlker
Heavy-Ion Spectroscopy with X-Ray Lasers at GSI (January 2014)
DOI

2013

R. Geithner, W. Vodel, R. Neubert, P. Seidel, F. Kurian, H. Reeg, and M. Schwickert
A Cryogenic Current Comparator for FAIR with Improved Resolution (September 2013)
File:pdfhttp://ibic2013.org/prepress/papers/tupf32.pdf