Laser-Teilchenbeschleunigung durch neue Targets erheblich verbessert

Durch den Einsatz nanostrukturierter Targets können am PHELIX-Laser wesentlich mehr Teilchen auf deutlich höhere Energien beschleunigt werden. Das Experiment mit dem Höchstleistungslaser führten Wissenschaftlerinnen und Wissenschaftler von GSI und FAIR, der Goethe-Universität Frankfurt und dem Helmholtz-Institut Jena auf dem GSI/FAIR-Campus durch. Das neuartige Nano-Target wurde in der GSI-Materialforschung hergestellt. Die Ergebnisse sind für die Laser-Beschleunigung ein Fortschritt, bieten aber auch für die zukünftige Plasma-Forschung an der Beschleunigeranlage FAIR großes Potential.

 

Auf dem Campus von GSI und FAIR steht mit dem PHELIX-Höchstleistungs-Laser (Petawatt High-Energy Laser for Ion Experiments) einer der stärksten Laser Deutschlands. Durch Fokussierung der gesamten Lichtenergie auf Haaresbreite können Plasmaphysiker Materiezustände bei Bedingungen untersuchen, die mit denen im Inneren von Sternen und Riesenplaneten vergleichbar sind. Es werden aber auch mögliche Anwendungen, z. B. die Laser-Teilchenbeschleunigung getestet. Hierbei schießen die Wissenschaftlerinnen und Wissenschaftler auf eine Zielscheibe, das sogenannte Target, und untersuchen, wie der ultrastarke Lichtpuls auf das Material wirkt. Nun wurde erstmals statt eines Targets mit glatter Oberfläche ein Target mit einer Nanodraht-Oberfläche getestet. „Hierbei stehen lange, extrem dünne Nanodrähte nah nebeneinander, ähnlich wie ein dichter Wald aus hohen Baumstämmen, der von oben mit dem Laser beschossen wird“, erklärt Paul Neumayer, Plasmaphysiker bei GSI und Leiter des Experiments. Nanotargets sind extrem fragile Strukturen. Bis vor kurzem hätte der Laserpuls sie zerstört, bevor er sie richtig erreicht hätte. Nun konnte aber der zeitliche Kontrast des PHELIX-Lasers in Zusammenarbeit mit dem Helmholtz-Institut Jena erheblich verbessert werden. Das heißt, dass der Lichtpuls nun zeitlich extrem „sauber“ abgegrenzt ist. So werden die Drähte sofort mit voller Energiedichte getroffen und den Target-Atomen auf einen Schlag die Elektronen entrissen. Dadurch wird ein elektrostatisches Feld erzeugt, das wiederum leichte Teilchen beschleunigen kann.

 

„Mit dem neuen Target konnten wir 30 Mal mehr Teilchen beschleunigen als bei gleichen Bedingungen mit den normalerweise verwendeten glatten Folientargets“, sagt Neumayer. „Und die Energie der beschleunigten Teilchen konnten wir um das 2- bis 2,5-Fache steigern.“ Für diese Verbesserung gibt es zwei Erklärungen. Erstens hat ein Nanotarget eine wesentlich höhere Oberfläche, wodurch die Wechselwirkung des Lasers mit dem Material verstärkt wird. Zweitens kann der Laserpuls in den Zwischenräumen zwischen den Drähten bis tief in die Struktur eindringen. So kann die Laserenergie bei deutlich höheren Dichten deponiert werden, als sie dem Laserlicht sonst zugänglich wären.

 

Neben der effizienteren Laser-Beschleunigung haben die neuen Targets noch einen weiteren Vorteil. Die Röntgen-Emission des heißen Plasmas ist um ein Vielfaches erhöht. „Dies ist nicht nur für die Vermessung von exotischen Plasmen von großem Vorteil, sondern bietet auch bei der Entwicklung intensivster Kurzpuls-Röntgenquellen für zukünftige FAIR-Experimente interessante Perspektiven“, erklärt Neumayer.

 

Die innovativen Nanotargets entwickelte Dimitri Khaghani in seiner Doktorarbeit. Der Laser- und Plasma-Physiker, der an der Goethe-Universität in Frankfurt promoviert hat, arbeitete dafür eng mit der GSI-Materialforschung zusammen, die bereits seit vielen Jahren Nanodrähte herstellt und erforscht. Nanodrähte wachsen in feinsten Kanälen in Kunststoff-Folien. Zur Erzeugung der Kanäle werden die Folien zunächst mit Schwerionen aus dem Linearbeschleuniger bestrahlt. Die entlang der Ionenbahn erzeugten Schadenszonen werden durch chemische Ätzung in offene Kanäle verwandelt, die anschließend elektrochemisch gefüllt werden. „Mit diesem Verfahren konnten wir Nanodrähte aus verschiedenen Materialien sowie unterschiedlichen Längen und Durchmessern testen, um herauszufinden, wann die Laser-Beschleunigung am effizientesten ist“, beschreibt Khaghani, der für seine Untersuchungen mit Nanotargets mit dem „Giersch-Excellence-Grant“ und dem „Giersch Award for Outstanding Doctoral Thesis“ ausgezeichnet wurde. „Der Synergie-Effekt durch die enge Kooperation zwischen Plasmaphysik und Materialforschung auf dem Campus war sicher mitentscheidend für den Erfolg der Experimente und bringt uns einen großen Schritt weiter“, erklärt Khaghani, der mittlerweile Postdoc am Helmholtz-Institut Jena ist.