Chemischer Reaktion auf die Finger geschaut

Helmholtz-Kooperation legt Grundstein für detaillierte Beobachtung chemischer Prozesse mittels Table-Top-Laser und Spezialdetektor.

 

In ihren Untersuchungen beschossen die Helmholtz-Wissenschaftler Iodmethan-Moleküle (CH3I), die aus einem Iodatom und einer Methylgruppe (CH3) bestehen, mit kurzen hochintensiven XUV-Pulsen. Durch das Licht wurde die Bindung zwischen Iod und Methylgruppe zerbrochen; die Fragmente der Moleküle wurden in einem Spektrometer aufgefangen und vermessen. Hieraus lassen sich die Umordung der Elektronen im angeregten Molekül und die folgenden induzierten chemischen Prozesse ableiten.  

 

Basis der Experimente war ein Table-Top-Lasersystem für Licht im sogenannten extremultravioletten Bereich (XUV). Der am Helmholtz-Institut Jena entwickelte Laser produziert sehr kurze und hochintensive XUV-Pulse, indem zunächst ein Infarot-Laserlichtpuls in einer Lichtleiterfaser stark verstärkt  wird und anschließend ungeradzahlige Vielfache der ursprünglichen Laserfrequenz erzeugt werden. Für diese Experimente wurde die Wellenlänge von etwa 18 Nanometern dieser sogenannten höheren harmonischen Frequenzen mittels spezieller Optiken ausgekoppelt und im Experiment genutzt.

 

„Das XUV-Lasersystem produziert Lichtblitze mit 1 Million Photonen, die nur 30 Femtosekunden lang sind, mit einer Pulsrate von bis zu 100 Kilohertz“, erklärt Prof. Jens Limpert. Dr. Jan Rothhardt, der den Laser mitentwickelt hat, sagt: „Die Kombination aus hohem Photonenfluss und sehr hoher Wiederholrate bei sehr guter Stabilität qualifiziert das System im Prinzip, um Nutzerexperimente für chemische Dynamiken durchzuführen.“

 

Die Art der Puls-Erzeugung durch höhere Harmonische bietet einen quasi eingebauten Vorteil: Man kann mit einem Lichtblitz, der im Laser erzeugt wird, eine chemische Reaktion anstoßen, um sie nach fest einstellbarer Zeit mit einem im selben Laser erzeugten XUV-Blitz zu untersuchen. „Die Verzögerung des zweiten Blitzes ist mit hoher Präzision einstellbar“, so Rothhardt. In dieser ersten Serie von Experimenten wurde diese „pump & probe“-Technik noch nicht eingesetzt; sie wurde aber schon getestet und ist für Folgeexperimente eingeplant.

 

Zweite wichtige Komponente der Experimente war eine komplexe Proben- und Detektorkammer, die für den Einsatz an Freie-Elektronen-Lasern (FEL) entwickelt worden ist und bereits an DESYs Beschleunigern FLASH und PETRA III im Einsatz war. In dieser CAMP-Experimentierkammer, von der Arbeitsgruppe Daniel Rolles an FLASH betrieben, wird die Probe in einem dünnen Strahl mit Überschallgeschwindigkeit in den Lichtstrahl geschossen. In der Interaktion mit dem XUV-Licht werden die Moleküle zerstört, und die Eigenschaften der davonfliegenden Fragmente in einem eingebauten Spektrometer mit hoher Präzision vermessen. Durch Koinzidenzmessungen können die aufgefangenen Bruchstücke ihrem Ursprungsmolekül zugeordnet werden, und aus der präzisen Charakterisierung der Bausteine kann der Verlauf des Bruchs der Bindung zeitaufgelöst entschlüsselt werden. „Mit dem Zusammenfließen der experimentellen und wissenschaftlichen Möglichkeiten aus Jena und Hamburg eröffnen wir neue Möglichkeiten in der Beobachtung chemischer Dynamiken“, sagt der Initiator der Experimente, DESY-Wissenschaftler Prof. Jochen Küpper, der auch dem Center for Free-Electron Laser Science und dem Hamburger Centre for Ultrafast Imaging der Universität Hamburg angehört. DESY-Forscher Tim Laarmann fährt fort: „Im nächsten Schritt werden wir mit dem Aufbau Pump-Probe-Experimente durchführen. Im Prinzip sollten mit diesem Aufbau sogar noch wesentlich höhere Zeitauflösungen von unter einer Femtosekunde möglich sein und wir so schnellste Elektronenbewegungen in komplexen Molekülen sichtbar machen können.“