J. Rothhardt,
A. M. Heidt,
S. Hädrich,
S. Demmler,
J. Limpert,
and A. Tünnermann
High stability soliton frequency-shifting mechanisms for laser synchronization applications
J. Opt. Soc. Am. B, 29 :1257 (May 2012)
High stability soliton frequency-shifting mechanisms for laser synchronization applications
J. Opt. Soc. Am. B, 29 :1257 (May 2012)
Abstract:
We analyze frequency-shifting mechanisms in photonic crystal fibers (PCFs). In contrast to the generally used approach of launching pulses in the negative group velocity dispersion (GVD) region of PCFs, we suggest employing a fiber with a higher zero dispersion wavelength that is pumped in the positive GVD region. Results of a numerical optimization reveal that the amplitude stability of the frequency-shifted pulses can be improved by more than 1 order of magnitude and the timing jitter arising from input fluctuations by 2 orders of magnitude by a proper choice of the fiber dispersion. The presented approach and optimization will improve the performance of timing- and amplitude-sensitive applications, such as nonlinear microscopy and spectroscopy or optical synchronization for optical parametric chirped pulse amplification significantly.