Peer-Review Publications

2016

M. Drągowski, M. Wlodarczyk, G. Weber, J. Ciborowski, J. Enders, Y. Fritzsche, and A. Poliszczuk
Monte Carlo study of the effective Sherman function for electron polarimetry
Nucl. Instr. Meth. Phys. Res. B, 389 :48 (December 2016)
Abstract:
The PEBSI Monte Carlo simulation was upgraded towards usefulness for electron Mott polarimetry. The description of Mott scattering was improved and polarisation transfer in Moller scattering was included in the code. An improved agreement was achieved between the simulation and available experimental data for a 100 keV polarised electron beam scattering off gold foils of various thicknesses. The dependence of the effective Sherman function on scattering angle and target thickness, as well as the method of finding optimal conditions for Mott polarimetry measurements were analysed.
L. Filippin, R. Beerwerth, J. Ekman, S. Fritzsche, M. Godefroid, and P. Jönsson
Multiconfiguration calculations of electronic isotope shift factors in Al I
Phys. Rev. A, 94 :062508 (December 2016)
Abstract:
The present work reports results from systematic multiconfiguration Dirac–Hartree–Fock calculations of electronic isotope shift factors for a set of transitions between low-lying levels of neutral aluminium. These electronic quantities together with observed isotope shifts between different pairs of isotopes provide the changes in mean-square charge radii of the atomic nuclei. Two computational approaches are adopted for the estimation of the mass- and field-shift factors. Within these approaches, different models for electron correlation are explored in a systematic way to determine a reliable computational strategy and to estimate theoretical error bars of the isotope shift factors.
A. V. Volotka, A. Surzhykov, S. Trotsenko, G. Plunien, T. Stöhlker, and S. Fritzsche
Nuclear Excitation by Two-Photon Electron Transition
Phys. Rev. Lett., 117 :243001 (December 2016)
Abstract:
A new mechanism of nuclear excitation via two-photon electron transitions (NETP) is proposed and studied theoretically. As a generic example, detailed calculations are performed for the E1E1 1s2sS01→1s2S01 two-photon decay of a He-like Ac87+225 ion with a resonant excitation of the 3/2+ nuclear state with an energy of 40.09(5) keV. The probability for such a two-photon decay via the nuclear excitation is found to be PNETP=3.5×10−9 and, thus, is comparable with other mechanisms, such as nuclear excitation by electron transition and by electron capture. The possibility for the experimental observation of the proposed mechanism is thoroughly discussed.
T. Saule, S. Holzberger, O. de Vries, M. Plötner, J. Limpert, A. Tünnermann, and I. Pupeza
Phase-stable, multi-textmuJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier
Appl. Phys. B, 123 :17 (December 2016)
Abstract:
We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The textmuJ-level output is spectrally broadened in a solid-core fiber and compressed to textasciitilde30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.
J. Hofbrucker, A. V. Volotka, and S. Fritzsche
Relativistic calculations of the nonresonant two-photon ionization of neutral atoms
Phys. Rev. A, 94 :063412 (December 2016)
Abstract:
The nonresonant, two-photon, one-electron ionization of neutral atoms is studied theoretically in the framework of relativistic second-order perturbation theory and independent particle approximation. In particular, the importance of relativistic and screening effects in the total two-photon ionization cross section is investigated. Detailed computations have been carried out for the K-shell ionization of neutral Ne, Ge, Xe, and U atoms. The relativistic effects significantly decrease the total cross section; for the case of U, for example, they reduce the total cross section by a factor of two. Moreover, we have found that the account for the screening effects of the remaining electrons leads to occurrence of an unexpected minimum in the total cross section at the total photon energies equal to the ionization threshold; for the case of Ne, for example, the cross section drops there by a factor of three.
M. Hornung, H. Liebetrau, S. Keppler, A. Kessler, M. Hellwing, F. Schorcht, G. A. Becker, M. Reuter, J. Polz, J. Körner, J. Hein, and M.C. Kaluza
54  J pulses with 18  nm bandwidth from a diode-pumped chirped-pulse amplification laser system
Opt. Lett., 41 :5413 (November 2016)
Abstract:
We report on results from the fully diode-pumped chirped-pulse amplification laser system Polaris. Pulses were amplified to a maximum energy of 54.2 J before compression. These pulses have a full width at half-maximum spectral bandwidth of 18 nm centered at 1033 nm and are generated at a repetition rate of 0.02 Hz. To the best of our knowledge, these are the most energetic broadband laser pulses generated by a diode-pumped laser system so far. Due to the limited size of our vacuum compressor, only attenuated pulses could be compressed to a duration of 98 fs containing an energy of 16.7 J, which leads to a peak power of 170 TW. These pulses could be focused to a peak intensity of 1.3×1021  W/cm2. Having an ultra-high temporal contrast of 1012 with respect to amplified spontaneous emission these laser pulses are well suited for high-intensity laser–matter experiments.
H. Heylen, C. Babcock, R. Beerwerth, J. Billowes, M. L. Bissell, K. Blaum, J. Bonnard, P. Campbell, B. Cheal, T. Day Goodacre, D. Fedorov, S. Fritzsche, R. F. Garcia Ruiz, W. Geithner, Ch. Geppert, W. Gins, L. K. Grob, M. Kowalska, K. Kreim, S. M. Lenzi, I. D. Moore, B. Maass, S. Malbrunot-Ettenauer, B. Marsh, R. Neugart, G. Neyens, W. Nörtershäuser, T. Otsuka, J. Papuga, R. Rossel, S. Rothe, R. Sanchez, Y. Tsunoda, C. Wraith, L. Xie, X. F. Yang, and D. T. Yordanov
Changes in nuclear structure along the Mn isotopic chain studied via charge radii
Phys. Rev. C, 94 :054321 (November 2016)
Abstract:
The hyperfine spectra of Mn51,53−64 were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic 3d54s2S5/26→3d54s4pP3/26 and ionic 3d54s5S2→3d54p5P3 transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear structure changes from N=25 across N=28 up to N=39. A clear development of deformation is observed towards N=40, confirming the conclusions of the nuclear moments studies. From a Monte Carlo shell-model study of the shape in the Mn isotopic chain, it is suggested that the observed development of deformation is not only due to an increase in static prolate deformation but also due to shape fluctuations and triaxiality. The changes in mean-square charge radii are well reproduced using the Duflo-Zuker formula except in the case of large deformation.
J. Körner, J. Hein, and M. Kaluza
Compact Aberration-Free Relay-Imaging Multi-Pass Layouts for High-Energy Laser Amplifiers
Appl. Sci., 6 :353 (November 2016)
Abstract:
We present the results from a theoretical investigation of laser beam propagation in relay imaging multi-pass layouts, which recently found application in high-energy laser amplifiers. Using a method based on the well-known ABCD-matrix formalism and proven by ray tracing, it was possible to derive a categorization of such systems. Furthermore, basic rules for the setup of such systems and the compensation for low order aberrations are derived. Due to the introduced generalization and parametrization, the presented results can immediately be applied to any system of the investigated kinds for a wide range of parameters, such as number of round-trips, focal lengths and optics sizes. It is shown that appropriate setups allow a close-to-perfect compensation of defocus caused by a thermal lens and astigmatism caused by non-normal incidence on the imaging optics, as well. Both are important to avoid intensity spikes leading to damages of optics in multi-pass laser amplifiers.
G. K. Tadesse, R. Klas, S. Demmler, S. Hädrich, I. Wahyutama, M. Steinert, C. Spielmann, M. Zürch, T. Pertsch, A. Tünnermann, J. Limpert, and J. Rothhardt
High speed and high resolution table-top nanoscale imaging
Opt. Lett., 41 :5170 (November 2016)
Abstract:
We present a table-top coherent diffractive imaging (CDI) experiment based on high-order harmonics generated at 18 nm by a high average power femtosecond fiber laser system. The high photon flux, narrow spectral bandwidth, and high degree of spatial coherence allow for ultrahigh subwavelength resolution imaging at a high numerical aperture. Our experiments demonstrate a half-pitch resolution of 15 nm, close to the actual Abbe limit of 12 nm, which is the highest resolution achieved from any table-top extreme ultraviolet (XUV) or x-ray microscope. In addition, sub-30 nm resolution was achieved with only 3 s of integration time, bringing live diffractive imaging and three-dimensional tomography on the nanoscale one step closer to reality. The current resolution is solely limited by the wavelength and the detector size. Thus, table-top nanoscopes with only a few-nanometer resolutions are in reach and will find applications in many areas of science and technology.
H. Li, X. M. Tong, N. Schirmel, G. Urbasch, K. J. Betsch, S. Zherebtsov, F. Süssmann, A. Kessel, S. A. Trushin, G.G. Paulus, K.-M. Weitzel, and M. F. Kling
Intensity dependence of the dissociative ionization of DCl in few-cycle laser fields
J. Phys. B, 49 :015601 (November 2016)
Abstract:
We have studied the dissociative ionization of DCl in 4 fs laser fields at 720 nm central wavelength using intensities in the range (1.3–3.1) × 10^14 W cm−2 . By employing the phase-tagged velocity-map imaging technique, information about the angular distribution of deuterium ions as a function of their kinetic energy and the carrier-envelope phase is obtained. On the basis of the experimental data and semi-classical simulations, three regions are distinguished for the resulting D+ ions with different kinetic energies. The one with the lowest kinetic energy, around 5–7 eV, is from dissociation involving the X-state of DCl+ , populated through direct ionization with the laser field. The second region, around 7–11 eV, originates from rescattering induced dissociative ionization. Above 2 × 10^14 W cm−2 D+ ions with kinetic energies exceeding 15 eV are obtained, which we ascribe to double ionization induced by rescattered electrons.
M. Fernandes, R. Geithner, J. Golm, R. Neubert, M. Schwickert, T. Stöhlker, J. Tan, and C. P. Welsch
Non-perturbative measurement of low-intensity charged particle beams
Supercond. Sci. Technol., 30 :015001 (November 2016)
Abstract:
Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 nA .
K.-H. Blumenhagen, S. Fritzsche, T. Gassner, A. Gumberidze, R. Märtin, N. Schell, D. Seipt, U. Spillmann, A. Surzhykov, S. Trotsenko, G. Weber, V. A. Yerokhin, and T. Stöhlker
Polarization transfer in Rayleigh scattering of hard x-rays
New J. Phys., 18 :103034 (November 2016)
Abstract:
We report on the first elastic hard x-ray scattering experiment where the linear polarization characteristics of both the incident and the scattered radiation were observed. Rayleigh scattering was investigated in a relativistic regime by using a high- Z target material, namely gold, and a photon energy of 175 keV. Although the incident synchrotron radiation was nearly 100% linearly polarized, at a scattering angle of θ=90° we observed a strong depolarization for the scattered photons with a degree of linear polarization of +27% ± 12% only. This finding agrees with second-order quantum electrodynamics calculations of Rayleigh scattering, when taking into account a small polarization impurity of the incident photon beam which was determined to be close to 98%. The latter value was obtained independently from the elastic scattering by analyzing photons that were Compton-scattered in the target. Moreover, our results indicate that when relying on state-of-the-art theory, Rayleigh scattering could provide a very accurate method to diagnose polarization impurities in a broad region of hard x-ray energies.
R. Klas, S. Demmler, M. Tschernajew, S. Hädrich, Y. Shamir, A. Tünnermann, J. Rothhardt, and J. Limpert
Table-top milliwatt-class extreme ultraviolet high harmonic light source
Optica, 3 :1167 (November 2016)
Abstract:
Extreme ultraviolet (XUV) lasers are essential for the investigation of fundamental physics. Especially high repetition rate, high photon flux sources are of major interest for reducing acquisition times and improving signal-to-noise ratios in a plethora of applications. Here, an XUV source based on cascaded frequency conversion is presented, which, due to the drastic better single atom response for short wavelength drivers, delivers an average output power of (832±204)  μW at 21.7 eV. This is the highest average power produced by any high harmonic generation source in this spectral range, surpassing previous demonstrations by almost an order of magnitude. Furthermore, a narrowband harmonic at 26.6 eV with a relative energy bandwidth of only ΔE/E=1.8·10−3 has been generated that is of high interest for high-precision spectroscopy experiments.
D. Seipt, R. A. Müller, A. Surzhykov, and S. Fritzsche
Two-color above-threshold ionization of atoms and ions in XUV Bessel beams and intense laser light
Phys. Rev. A, 94 :053420 (November 2016)
Abstract:
The two-color above-threshold ionization (ATI) of atoms and ions is investigated for a vortex Bessel beam in the presence of a strong near-infrared (NIR) light field. While the photoionization is caused by the photons from the weak but extreme ultraviolet (XUV) vortex Bessel beam, the energy and angular distribution of the photoelectrons and their sideband structure are affected by the plane-wave NIR field. We here explore the energy spectra and angular emission of the photoelectrons in such two-color fields as a function of the size and location of the target atoms with regard to the beam axis. In addition, analog to the circular dichroism in typical two-color ATI experiments with circularly polarized light, we define and discuss seven different dichroism signals for such vortex Bessel beams that arise from the various combinations of the orbital and spin angular momenta of the two light fields. For localized targets, it is found that these dichroism signals strongly depend on the size and position of the atoms relative to the beam. For macroscopically extended targets, in contrast, three of these dichroism signals tend to zero, while the other four just coincide with the standard circular dichroism, similar as for Bessel beams with a small opening angle. Detailed computations of the dichroism are performed and discussed for the 4s valence-shell photoionization of Ca+ ions.
I. P. Ivanov, D. Seipt, A. Surzhykov, and S. Fritzsche
Elastic scattering of vortex electrons provides direct access to the Coulomb phase
Phys. Rev. D, 94 :076001 (October 2016)
Abstract:
Vortex electron beams are freely propagating electron waves carrying adjustable orbital angular momentum with respect to the propagation direction. Such beams were experimentally realized just a few years ago and are now used to probe various electromagnetic processes. So far, these experiments used the single vortex electron beams, either propagating in external fields or impacting a target. Here, we investigate the elastic scattering of two such aligned vortex electron beams and demonstrate that this process allows one to experimentally measure features which are impossible to detect in the usual plane-wave scattering. The scattering amplitude of this process is well approximated by two plane-wave scattering amplitudes with different momentum transfers, which interfere and give direct experimental access to the Coulomb phase. This phase (shift) affects the scattering of all charged particles and has thus received significant theoretical attention but was never probed experimentally. We show that a properly defined azimuthal asymmetry, which has no counterpart in plane-wave scattering, allows one to directly measure the Coulomb phase as function of the scattering angle.
R. Müller, D. Seipt, R. Beerwerth, M. Ornigotti, A. Szameit, S. Fritzsche, and A. Surzhykov
Photoionization of neutral atoms by X waves carrying orbital angular momentum
Phys. Rev. A, 94 :041402 (October 2016)
Abstract:
In contrast to plane waves, twisted or vortex beams have a complex spatial structure. Both their intensity and energy flow vary within the wave front. Beyond that, polychromatic vortex beams, such as X waves, have a spatially dependent energy distribution. We propose a method to measure this (local) energy spectrum. The method is based on the measurement of the energy distribution of photoelectrons from alkali-metal atoms. On the basis of our fully relativistic calculations, we argue that even ensembles of atoms can be used to probe the local energy spectrum of short twisted pulses.
S. Schippers, R. Beerwerth, L. Abrok, S. Bari, T. Buhr, M. Martins, S. Ricz, J. Viefhaus, S. Fritzsche, and A. Müller
Prominent role of multielectron processes in K-shell double and triple photodetachment of oxygen anions
Phys. Rev. A, 94 :041401 (October 2016)
Abstract:
The photon-ion merged-beam technique was used at a synchrotron light source for measuring the absolute cross sections of the double and triple photodetachment of O− ions. The experimental photon energy range of 524–543 eV comprised the threshold for K-shell ionization. Using resolving powers of up to 13 000, the position, strength, and width of the below-threshold 1s2s22p6 S2 resonance as well as the positions of the 1s2s22p5 P3 and 1s2s22p5 P1 thresholds for K-shell ionization were determined with high precision. In addition, systematically enlarged multiconfiguration Dirac-Fock calculations have been performed for the resonant detachment cross sections. Results from these ab initio computations agree very well with the measurements for the widths and branching fractions for double and triple detachment, if double shakeup (and shakedown) of the valence electrons and the rearrangement of the electron density is taken into account. For the absolute cross sections, however, a previously found discrepancy between measurements and theory is confirmed.
S. Keppler, M. Hornung, P. Zimmermann, H. Liebetrau, M. Hellwing, J. Hein, and M.C. Kaluza
Tunable filters for precise spectral gain control in ultra-short-pulse laser systems
Opt. Lett., 41 :4708 (October 2016)
Abstract:
We present tunable spectral filters (TSFs) as a variable and precisely adjustable method to control the spectral gain of short-pulse laser systems. The TSFs provide a small residual spectral phase and a high damage threshold, and generate no pre- or post-pulses. The method is demonstrated for two different laser materials and can be applied as an intracavity compensation in regenerative amplifiers as well as a method for pre-compensation in high-energy multipass amplifiers. With this method, a full width at half-maximum bandwidth of 23.9 nm could be demonstrated in a diode-pumped, 50 J Yb:CaF2 amplifier.
I. P. Ivanov, D. Seipt, A. Surzhykov, and S. Fritzsche
Double-slit experiment in momentum space
Europhys. Lett., 115 :41001 (September 2016)
Abstract:
Young's classic double-slit experiment demonstrates the reality of interference when waves and particles travel simultaneously along two different spatial paths. Here, we propose a double-slit experiment in momentum space, realized in the free-space elastic scattering of vortex electrons. We show that this process proceeds along two paths in momentum space, which are well localized and well separated from each other. For such vortex beams, the (plane-wave) amplitudes along the two paths acquire adjustable phase shifts and produce interference fringes in the final angular distribution. We argue that this experiment can be realized with the present-day technology. We show that it gives experimental access to the Coulomb phase, a quantity which plays an important role in all charged particle scattering but which usual scattering experiments are insensitive to.
V. A. Yerokhin, S. Y. Buhmann, S. Fritzsche, and A. Surzhykov
Electric dipole polarizabilities of Rydberg states of alkali-metal atoms
Phys. Rev. A, 94 :032503 (September 2016)
Abstract:
Calculations of the static electric-dipole scalar and tensor polarizabilities are presented for two alkali-metal atoms, Rb and Cs, for the nS, nP½,3/2, and nD3/2,5/2 states with large principal quantum numbers up to n=50. The calculations are performed within an effective one-electron approximation, based on the Dirac-Fock Hamiltonian with a semiempirical core-polarization potential. The obtained results are compared with those from a simpler semiempirical approach and with available experimental data.
S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, and J. Limpert
Energetic sub-2-cycle laser with 216 W average power
Opt. Lett., 41 :4332 (September 2016)
Abstract:
Few-cycle lasers are essential for many research areas such as attosecond physics that promise to address fundamental questions in science and technology. Therefore, further advancements are connected to significant progress in the underlying laser technology. Here, two-stage nonlinear compression of a 660 W femtosecond fiber laser system is utilized to achieve unprecedented average power levels of energetic ultrashort or even few-cycle laser pulses. In a first compression step, 408 W, 320 μJ, 30 fs pulses are achieved, which can be further compressed to 216 W, 170 μJ, 6.3 fs pulses in a second compression stage. To the best of our knowledge, this is the highest average power few-cycle laser system presented so far. It is expected to significantly advance the fields of high harmonic generation and attosecond science.
T. Tanikawa, A. Hage, M. Kuhlmann, J. Gonschior, S. Grunewald, E. Plönjes, S. Düsterer, G. Brenner, S. Dziarzhytski, M. Braune, M. Brachmanski, Z. Yin, F. Siewert, T. Dzelzainis, B. Dromey, M. Prandolini, F. Tavella, M. Zepf, and B. Faatz
First observation of SASE radiation using the compact wide-spectral-range XUV spectrometer at FLASH2
Nucl. Instr. Meth. Phys. Res. A, 830 :170 (September 2016)
Abstract:
The Free-electron LASer in Hamburg (FLASH) has been extended with a new undulator line FLASH2 in 2014. A compact grazing-incident wide-spectral-range spectrometer based on spherical-variable-line-spacing (SVLS) gratings in the extreme ultraviolet (XUV) region was constructed to optimize and characterize the free-electron laser (FEL) performance at FLASH2. The spectrometer is equipped with three different concave SVLS gratings covering a spectral range from 1 to 62 nm to analyze the spectral characteristics of the XUV radiation. Wavelength calibration and evaluation of the spectral resolution were performed at the plane grating monochromator beamline PG2 at FLASH1 before the installation at FLASH2, and compared with analytical simulations. The first light using self-amplified spontaneous emission from FLASH2 was observed by the spectrometer during a simultaneous operation of both undulator lines — FLASH1 and FLASH2. In addition, the spectral resolution of the spectrometer was evaluated by comparing the measured spectrum from FLASH2 with FEL simulations.
H. Bernhardt, B. Marx-Glowna, K. Schulze, B. Grabiger, J. Haber, C. Detlefs, R. Lötzsch, T. Kämpfer, R. Röhlsberger, E. Förster, T. Stöhlker, I. Uschmann, and G.G. Paulus
High purity x-ray polarimetry with single-crystal diamonds
Appl. Phys. Lett., 109 :121106 (September 2016)
Abstract:
We report on the use of synthetic single-crystal diamonds for high purity x-ray polarimetry to improve the polarization purity of present-day x-ray polarimeters. The polarimeter setup consists of a polarizer and an analyzer, each based on two parallel diamond crystals used at a Bragg angle close to 45°. The experiment was performed using one (400) Bragg reflection on each diamond crystal and synchrotron undulator radiation at an x-ray energy of 9838.75 eV. A polarization purity of 8.9 × 10−10 was measured at the European Synchrotron Radiation Facility, which is the best value reported for two-reflection polarizer/analyzer setups. This result is encouraging and is a first step to improve the resolution of x-ray polarimeters further by using diamond crystal polarizers and analyzers with four or six consecutive reflections.
I. S. Wahyutama, G. K. Tadesse, A. Tünnermann, J. Limpert, and J. Rothhardt
Influence of detector noise in holographic imaging with limited photon flux
Opt. Express, 24 :22013 (September 2016)
Abstract:
Lensless coherent diffractive imaging usually requires iterative phase-retrieval for recovering the missing phase information. Holographic techniques, such as Fourier-transform holography (FTH) or holography with extended references (HERALDO), directly provide this phase information and thus allow for a direct non-iterative reconstruction of the sample. In this paper, we analyze the effect of detector noise on the reconstruction for FTH and HERALDO with linear and rectangular references. We find that HERALDO is more sensitive to this type of noise than FTH, especially if rectangular references are employed. This excessive noise, caused by the necessary differentiation step(s) during reconstruction in case of HERALDO, additionally depends on the numerical implementation. When considering both shot-noise and detector noise, we find that FTH provides a better signal-to-noise ratio (SNR) than HERALDO if the available photon flux from the light source is low. In contrast, at high photon flux HERALDO provides better SNR and resolution than FTH. Our findings will help in designing optimum holographic imaging experiments particularly in the photon-flux-limited regime where most ultrafast experiments operate.
M. Lestinsky, V. Andrianov, B. Aurand, V. Bagnoud, D. Bernhardt, H. Beyer, S. Bishop, K. Blaum, A. Bleile, At. Borovik, F. Bosch, C. Bostock, C. Brandau, A. Bräuning-Demian, I. Bray, T. Davinson, B. Ebinger, A. Echler, P. Egelhof, A. Ehresmann, M. Engström, C. Enss, N. Ferreira, D. Fischer, A. Fleischmann, E. Förster, S. Fritzsche, R. Geithner, S. Geyer, J. Glorius, K. Göbel, O. Gorda, J. Goullon, P. Grabitz, R. Grisenti, A. Gumberidze, S. Hagmann, M. Heil, A. Heinz, F. Herfurth, R. Hess, P.-M. Hillenbrand, R. Hubele, P. Indelicato, A. Källberg, O. Kester, O. Kiselev, A. Knie, C. Kozhuharov, S. Kraft-Bermuth, T. Kühl, G. Lane, Y. Litvinov, D. Liesen, X. Ma, R. Märtin, R. Moshammer, A. Müller, S. Namba, P. Neumayer, T. Nilsson, W. Nörtershäuser, G.G. Paulus, N. Petridis, M. Reed, R. Reifarth, P. Reiß, J. Rothhardt, R. Sanchez, M. Sanjari, S. Schippers, H. Schmidt, D. Schneider, P. Scholz, R. Schuch, M. Schulz, V. Shabaev, A. Simonsson, J. Sjöholm, Ö. Skeppstedt, K. Sonnabend, U. Spillmann, K. Stiebing, M. Steck, T. Stöhlker, A. Surzhykov, S. Torilov, E. Träbert, M. Trassinelli, S. Trotsenko, X. Tu, I. Uschmann, P. Walker, G. Weber, D. Winters, P. Woods, H. Zhao, and Y. Zhang
Physics book: CRYRING@ESR
Eur. Phys. J. Special Topics, 225 :797 (September 2016)
Abstract:
The exploration of the unique properties of stored and cooled beams of highly-charged ions as provided by heavy-ion storage rings has opened novel and fascinating research opportunities in the realm of atomic and nuclear physics research. Since the late 1980s, pioneering work has been performed at the CRYRING at Stockholm and at the Test Storage Ring (TSR) at Heidelberg. For the heaviest ions in the highest charge-states, a real quantum jump was achieved in the early 1990s by the commissioning of the Experimental Storage Ring (ESR) at GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt where challenging experiments on the electron dynamics in the strong field regime as well as nuclear physics studies on exotic nuclei and at the borderline to atomic physics were performed. Meanwhile also at Lanzhou a heavy-ion storage ring has been taken in operation, exploiting the unique research opportunities in particular for medium-heavy ions and exotic nuclei.