Peer-Review Publications

2017

J. Hofbrucker, A. V. Volotka, and S. Fritzsche
Photoelectron distribution of nonresonant two-photon ionization of neutral atoms
Phys. Rev. A, 96 :013409 (July 2017)
Abstract:
Photoelectron angular distributions following the nonresonant two-photon K-shell ionization of neutral atoms are studied theoretically. Using the independent particle approximation and relativistic second-order perturbation theory, the contributions of screening and relativistic effects to the photoelectron angular distribution are evaluated. A simple nonrelativistic expression is presented for the angle-differential cross section in dipole approximation for two-photon ionization by elliptically polarized photons, and its limitations are analyzed numerically. Moreover, we show that screening effects of the inactive electrons can significantly affect the photoelectron distributions and can also lead to a strong elliptical dichroism. Numerical results are presented for the case of two-photon K-shell ionization of neutral Ne, Ge, Xe, and U atoms.
M. Zürch, R. Jung, C. Späth, J. Tümmler, A. Guggenmos, D. Attwood, U. Kleineberg, H. Stiel, and C. Spielmann
Transverse Coherence Limited Coherent Diffraction Imaging using a Molybdenum Soft X-ray Laser Pumped at Moderate Pump Energies
Sci. Rep., 7 :5314 (July 2017)
Abstract:
Coherent diffraction imaging (CDI) in the extreme ultraviolet has become an important tool for nanoscale investigations. Laser-driven high harmonic generation (HHG) sources allow for lab scale applications such as cancer cell classification and phase-resolved surface studies. HHG sources exhibit excellent coherence but limited photon flux due poor conversion efficiency. In contrast, table-top soft X-ray lasers (SXRL) feature excellent temporal coherence and extraordinary high flux at limited transverse coherence. Here, the performance of a SXRL pumped at moderate pump energies is evaluated for CDI and compared to a HHG source. For CDI, a lower bound for the required mutual coherence factor of |μ12| ≥ 0.75 is found by comparing a reconstruction with fixed support to a conventional characterization using double slits. A comparison of the captured diffraction signals suggests that SXRLs have the potential for imaging micron scale objects with sub-20 nm resolution in orders of magnitude shorter integration time compared to a conventional HHG source. Here, the low transverse coherence diameter limits the resolution to approximately 180 nm. The extraordinary high photon flux per laser shot, scalability towards higher repetition rate and capability of seeding with a high harmonic source opens a route for higher performance nanoscale imaging systems based on SXRLs.
H. Stark, M. Müller, M. Kienel, A. Klenke, J. Limpert, and A. Tünnermann
Electro-optically controlled divided-pulse amplification
Opt. Express, 25 :13494 (June 2017)
Abstract:
A novel technique for divided-pulse amplification is presented in a proof-of-principle experiment. A pulse burst, cut out of the pulse train of a mode-locked oscillator, is amplified and temporally combined into a single pulse. High combination efficiency and excellent pulse contrast are demonstrated. The system is mostly fiber-coupled, enabling a high interferometric stability. This approach provides access to the amplitude and phase of the individual pulses in the burst to be amplified, potentially allowing the compensation of gain saturation and nonlinear phase mismatches within the burst. Therefore, this technique enables the scaling of the peak power and pulse energy of pulsed laser systems beyond currently prevailing limitations.
W. Cayzac, A. Frank, A. Ortner, V. Bagnoud, M. M. Basko, S. Bedacht, C. Bläser, A. Blazevic, S. Busold, O. Deppert, J. Ding, M. Ehret, P. Fiala, S. Frydrych, D. O. Gericke, L. Hallo, J. Helfrich, D. Jahn, E. Kjartansson, A. Knetsch, D. Kraus, G. Malka, N. W. Neumann, K. Pépitone, D. Pepler, S. Sander, G. Schaumann, T. Schlegel, N. Schroeter, D. Schumacher, and M. Seibert
Experimental discrimination of ion stopping models near the Bragg peak in highly ionized matter
Nat. Commun., 8 :15693 (June 2017)
Abstract:
The energy deposition of ions in dense plasmas is a key process in inertial confinement fusion that determines the α-particle heating expected to trigger a burn wave in the hydrogen pellet and resulting in high thermonuclear gain. However, measurements of ion stopping in plasmas are scarce and mostly restricted to high ion velocities where theory agrees with the data. Here, we report experimental data at low projectile velocities near the Bragg peak, where the stopping force reaches its maximum. This parameter range features the largest theoretical uncertainties and conclusive data are missing until today. The precision of our measurements, combined with a reliable knowledge of the plasma parameters, allows to disprove several standard models for the stopping power for beam velocities typically encountered in inertial fusion. On the other hand, our data support theories that include a detailed treatment of strong ion-electron collisions.
A. Alejo, A. G. Krygier, H. Ahmed, J. T. Morrison, R. J. Clarke, J. Fuchs, A. Green, J. S. Green, D. Jung, A. Kleinschmidt, Z. Najmudin, H. Nakamura, P. Norreys, M. Notley, M. Oliver, M. Roth, L. Vassura, M. Zepf, M. Borghesi, R. R. Freeman, and S. Kar
High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets
Plasma Phys. Contr. F., 59 :064004 (June 2017)
Abstract:
A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D₂O ice at the rear side, irradiated by sub-petawatt laser pulses (~200 J, ~750 fs) at peak intensity ∼2×10²⁰ W cm⁻². The neutrons were preferentially produced in a beam of ~70° FWHM cone along the ion beam forward direction, with maximum energy up to ~40 MeV and a peak flux along the axis ∼2×10⁹ n sr⁻¹ for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)³He reaction using the deuteron beam produced by the ice-layered target.
M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. Schmidt
Hybrid soliton dynamics in liquid-core fibres
Nat. Commun., 8 :42 (June 2017)
Abstract:
The discovery of optical solitons being understood as temporally and spectrally stationary optical states has enabled numerous innovations among which, most notably, supercontinuum light sources have become widely used in both fundamental and applied sciences. Here, we report on experimental evidence for dynamics of hybrid solitons—a new type of solitary wave, which emerges as a result of a strong non-instantaneous nonlinear response in CS2-filled liquid-core optical fibres. Octave-spanning supercontinua in the mid-infrared region are observed when pumping the hybrid waveguide with a 460 fs laser (1.95 μm) in the anomalous dispersion regime at nanojoule-level pulse energies. A detailed numerical analysis well correlated with the experiment uncovers clear indicators of emerging hybrid solitons, revealing their impact on the bandwidth, onset energy and noise characteristics of the supercontinua. Our study highlights liquid-core fibres as a promising platform for fundamental optics and applications towards novel coherent and reconfigurable light sources.
S. H. Hendi, B. E. Panah, S. Panahiyan, and M. Momennia
Magnetic brane solutions in Gauss–Bonnet–Maxwell massive gravity
Phys. Lett. B, 772 :43 (June 2017)
Abstract:
Magnetic branes of Gauss–Bonnet–Maxwell theory in the context of massive gravity is studied in detail. Exact solutions are obtained and their interesting geometrical properties are investigated. It is argued that although these horizonless solutions are free of curvature singularity, they enjoy a cone-like geometry with a conic singularity. In order to investigate the effects of various parameters on the geometry of conic singularity, its corresponding deficit angle is studied. It will be shown that despite the effects of Gauss–Bonnet gravity on the solutions, deficit angle is free of Gauss–Bonnet parameter. On the other hand, the effects of massive gravity, cosmological constant and electrical charge on the deficit angle will be explored. Also, a brief discussion related to possible geometrical phase transition of these topological objects is given.
P. Finetti, H. Höppner, E. Allaria, C. Callegari, F. Capotondi, P. Cinquegrana, M. Coreno, R. Cucini, M. Danailov, A. Demidovich, G. De Ninno, M. Di Fraia, R. Feifel, E. Ferrari, L. Fröhlich, D. Gauthier, T. Golz, C. Grazioli, Y. Kai, G. Kurdi, N. Mahne, M. Manfredda, N. Medvedev, I. Nikolov, E. Pedersoli, G. Penco, O. Plekan, M. Prandolini, K. Prince, L. Raimondi, P. Rebernik, R. Riedel, E. Roussel, P. Sigalotti, R. Squibb, N. Stojanovic, S. Stranges, C. Svetina, T. Tanikawa, U. Teubner, V. Tkachenko, S. Toleikis, M. Zangrando, B. Ziaja, F. Tavella, and L. Giannessi
Pulse Duration of Seeded Free-Electron Lasers
Phys. Rev. X, 7 :021043 (June 2017)
Abstract:
The pulse duration, and, more generally, the temporal intensity profile of free-electron laser (FEL) pulses, is of utmost importance for exploring the new perspectives offered by FELs; it is a nontrivial experimental parameter that needs to be characterized. We measured the pulse shape of an extreme ultraviolet externally seeded FEL operating in high-gain harmonic generation mode. Two different methods based on the cross-correlation of the FEL pulses with an external optical laser were used. The two methods, one capable of single-shot performance, may both be implemented as online diagnostics in FEL facilities. The measurements were carried out at the seeded FEL facility FERMI. The FEL temporal pulse characteristics were measured and studied in a range of FEL wavelengths and machine settings, and they were compared to the predictions of a theoretical model. The measurements allowed a direct observation of the pulse lengthening and splitting at saturation, in agreement with the proposed theory.
F. Tavella, H. Höppner, V. Tkachenko, N. Medvedev, F. Capotondi, T. Golz, Y. Kai, M. Manfredda, E. Pedersoli, M. J. Prandolini, N. Stojanovic, T. Tanikawa, U. Teubner, S. Toleikis, and B. Ziaja
Soft x-ray induced femtosecond solid-to-solid phase transition
HEDP, 24 :22 (June 2017)
Abstract:
Abstract Soft x-rays were applied to induce graphitization of diamond through a non-thermal solid-to-solid phase transition. This process was observed within poly-crystalline diamond with a time-resolved experiment using ultrashort soft x-ray pulses of duration 52.5 fs and cross correlated by an optical pulse of duration 32.8 fs. This scheme enabled for the first time the measurement of a phase transition on a timescale of ∼150 fs. Excellent agreement between experiment and theoretical predictions was found, using a dedicated code that followed the non-equilibrium evolution of the irradiated diamond including all transient electronic and structural changes. These observations confirm that soft x-rays can induce a non-thermal ultrafast solid-to-solid phase transition on a hundred femtosecond timescale.
D. Zille, D. Seipt, M. Möller, S. Fritzsche, G.G. Paulus, and D. B. Milošević
Spin-dependent quantum theory of high-order above-threshold ionization
Phys. Rev. A, 95 :063408 (June 2017)
Abstract:
The strong-field-approximation theory of high-order above-threshold ionization of atoms is generalized to include the electron spin. The obtained rescattering amplitude consists of a direct and exchange part. On the examples of excited He atoms as well as Li^+ and Be^2+ ions, it is shown that the interference of these two amplitudes leads to an observable difference between the photoelectron momentum distributions corresponding to different initial spin states: Pronounced minima appear for singlet states, which are absent for triplet states.
V. Bagnoud, J. Hornung, T. Schlegel, B. Zielbauer, C. Brabetz, M. Roth, P. Hilz, M. Haug, J. Schreiber, and F. Wagner
Studying the Dynamics of Relativistic Laser-Plasma Interaction on Thin Foils by Means of Fourier-Transform Spectral Interferometry
Phys. Rev. Lett., 118 :255003 (June 2017)
Abstract:
We apply Fourier-transform spectral interferometry (FTSI) to study the interaction of intense laser pulses with ultrathin targets. Ultrathin submicrometer-thick solid CH targets were shot at the PHELIX laser facility with an intensity in the mid to upper 10^19  W/cm2 range using an innovative double-pulse structure. The transmitted pulse structure was analyzed by FTSI and shows a transition from a relativistic transparency-dominated regime for targets thinner than 500 nm to a hole-boring-dominated laser-plasma interaction for thicker targets. The results also confirm that the inevitable preplasma expansion happening during the rising slope of the pulse, a few picoseconds before the maximum of the pulse is reached, cannot be neglected and plays a dominant role in laser-plasma interaction with ultrathin solid targets.
M. Vockert, G. Weber, U. Spillmann, T. Krings, M. Herdrich, and T. Stöhlker
Commissioning of a Si(Li) Compton polarimeter with improved energy resolution
Nucl. Instr. Meth. Phys. Res. B, 408 :313 (May 2017)
Abstract:
Abstract On the basis of a double-side segmented Si(Li) crystal a new Compton polarimeter was developed within the SPARC collaboration. The new detector is equipped with a cryogenic first stage of the preamplifiers to improve the energy resolution compared to previous detectors with preamplifiers operating at room temperature. We present first results from a commissioning measurement of the new instrument at the ESR storage ring of GSI in Darmstadt, Germany and contrast it with the performance of an precursor polarimeter system.
B. Goswami, B. Antony, and S. Fritzsche
Electron impact scattering and calculated ionization cross sections for SFx (x=1–5) radicals
\u200eInt. J. Mass Spectrom., 417 :8 (May 2017)
Abstract:
Abstract The spherical complex optical potential (SCOP) formalism is employed to solve the e−-SFx (x=1–5) scattering system. In this article, the total cross sections by electron impact from 50 to 5000eV are calculated. The complex scattering potential ionization contribution (CSP-ic) method is used to compute the electron-induced total ionization cross sections from the inelastic cross section in the energy range from ionization threshold to 5000eV. For most of the reported radicals, the magnitude and shape of cross section compares well with previous measurements and calculations, wherever available. However, for many targets results are predicted for the first time in this work. From the electron-impact scattering cross sections for the SFx (x=1–5) radicals, we also estimate the gas-kinetic radius and the van der Waals coefficient.
M. Herdrich, G. Weber, A. Gumberidze, Z. Wu, and T. Stöhlker
Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions
Nucl. Instr. Meth. Phys. Res. B, 408 :294 (May 2017)
Abstract:
Abstract In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.
J. Ullmann, Z. Andelkovic, C. Brandau, A. Dax, W. Geithner, C. Geppert, C. Gorges, M. Hammen, V. Hannen, S. Kaufmann, K. König, Y. Litvinov, M. Lochmann, B. Maass, J. Meisner, T. Murböck, R. Sanchez, M. Schmidt, S. Schmidt, M. Steck, T. Stöhlker, R. Thompson, C. Trageser, J. Vollbrecht, C. Weinheimer, and W. Nörtershäuser
High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED
Nat. Commun., 8 :15484 (May 2017)
Abstract:
Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209^Bi^82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209^Bi^82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.
M. M. Günther, M. Jentschel, A. J. Pollitt, P. G. Thirolf, and M. Zepf
Refractive-index measurement of Si at γ-ray energies up to 2 MeV
Phys. Rev. A, 95 :053864 (May 2017)
Abstract:
The refractive index of silicon at γ-ray energies from 181 to 1959 keV was investigated using the GAMS6 double crystal spectrometer and found to follow the predictions of the classical scattering model. This is in contrast to earlier measurements on the GAMS5 spectrometer, which suggested a sign change in the refractive index for photon energies above 500 keV. We present a reevaluation of the original data from 2011 as well as data from a 2013 campaign in which we show that systematic errors due to diffraction effects of the prism can explain the earlier data.
A. I. Bondarev, Y. S. Kozhedub, I. I. Tupitsyn, V. M. Shabaev, G. Plunien, and T. Stöhlker
Relativistic calculations of differential ionization cross sections: Application to antiproton-hydrogen collisions
Phys. Rev. A, 95 :052709 (May 2017)
Abstract:
A relativistic method based on the Dirac equation for calculating fully differential cross sections for ionization in ion-atom collisions is developed. The method is applied to ionization of the atomic hydrogen by antiproton impact, as a nonrelativistic benchmark. The fully differential, as well as various doubly and singly differential, cross sections for ionization are presented. The role of the interaction between the projectile and the target nucleus is discussed. Several discrepancies in available theoretical predictions are resolved. The relativistic effects are studied for ionization of hydrogenlike xenon ion under the impact of carbon nuclei.
D. Seipt, T. Heinzl, M. Marklund, and S. S. Bulanov
Depletion of Intense Fields
Phys. Rev. Lett., 118 :154803 (April 2017)
Abstract:
The interaction of charged particles and photons with intense electromagnetic fields gives rise to multiphoton Compton and Breit-Wheeler processes. These are usually described in the framework of the external field approximation, where the electromagnetic field is assumed to have infinite energy. However, the multiphoton nature of these processes implies the absorption of a significant number of photons, which scales as the external field amplitude cubed. As a result, the interaction of a highly charged electron bunch with an intense laser pulse can lead to significant depletion of the laser pulse energy, thus rendering the external field approximation invalid. We provide relevant estimates for this depletion and find it to become important in the interaction between fields of amplitude a0∼103 and electron bunches with charges of the order of 10 nC.
F. Karbstein
Heisenberg-Euler effective action in slowly varying electric field inhomogeneities of Lorentzian shape
Phys. Rev. D, 95 :076015 (April 2017)
Abstract:
We use a locally constant field approximation (LCFA) to study the one-loop Heisenberg-Euler effective action in a particular class of slowly varying inhomogeneous electric fields of Lorentzian shape with 0≤d<4 inhomogeneous directions. We show that, for these fields, the LCFA of the Heisenberg-Euler effective action can be represented in terms of a single parameter integral, with the constant field effective Lagrangian with rescaled argument as integration kernel. The imaginary part of the Heisenberg-Euler effective action contains information about the instability of the quantum vacuum towards the formation of a state with real electrons and positrons. Here, in particular, we focus on the dependence of the instantaneous vacuum decay rate on the dimension d of the field inhomogeneity. Specifically, for weak fields, we find an overall parametric suppression of the effect with (E0/Ecr)^(d/2), where E0 is the peak field strength of the inhomogeneity and Ecr the critical electric field strength.
V. A. Schanz, F. Wagner, M. Roth, and V. Bagnoud
Noise reduction in third order cross-correlation by angle optimization of the interacting beams
Opt. Express, 25 :9252 (April 2017)
Abstract:
We report on a novel technique to reduce the noise level in scanning third order cross-correlation. Large angles between the interacting beams combined with adapted crystal parameters lead to a significant decrease of noise photon generation while maintaining efficient generation of the third order signal. An enhanced scanning cross-correlator was developed based on the new technique proposed. In tests at the PHELIX laser facility this novel correlator performed within a dynamic range of 12.5 orders of magnitude.
H. Gies, and F. Karbstein
An addendum to the Heisenberg-Euler effective action beyond one loop
J. High Energ. Phys., 03 :108 (March 2017)
Abstract:
We study the effective interactions of external electromagnetic fields induced by fluctuations of virtual particles in the vacuum of quantum electrodynamics. Our main focus is on these interactions at two-loop order. We discuss in detail the emergence of the renowned Heisenberg-Euler effective action from the underlying microscopic theory of quantum electrodynamics, emphasizing its distinction from a standard one-particle irreducible effective action. In our explicit calculations we limit ourselves to constant and slowly varying external fields, allowing us to adopt a locally constant field approximation. One of our main findings is that at two-loop order there is a finite one-particle reducible contribution to the Heisenberg-Euler effective action in constant fields, which was previously assumed to vanish. In addition to their conceptual significance, our results are relevant for high-precision probes of quantum vacuum nonlinearity in strong electromagnetic fields.
H. X. Chang, B. Qiao, T. W. Huang, Z. Xu, C. T. Zhou, Y. Q. Gu, X. Q. Yan, M. Zepf, and X. T. He
Brilliant petawatt gamma-ray pulse generation in quantum electrodynamic laser-plasma interaction
Sci. Rep., 7 :45031 (March 2017)
Abstract:
We show a new resonance acceleration scheme for generating ultradense relativistic electron bunches in helical motions and hence emitting brilliant vortical γ-ray pulses in the quantum electrodynamic (QED) regime of circularly-polarized (CP) laser-plasma interactions. Here the combined effects of the radiation reaction recoil force and the self-generated magnetic fields result in not only trapping of a great amount of electrons in laser-produced plasma channel, but also significant broadening of the resonance bandwidth between laser frequency and that of electron betatron oscillation in the channel, which eventually leads to formation of the ultradense electron bunch under resonant helical motion in CP laser fields. Three-dimensional PIC simulations show that a brilliant γ-ray pulse with unprecedented power of 6.7 PW and peak brightness of 10²⁵ photons/s/mm²/mrad²/0.1% BW (at 15 MeV) is emitted at laser intensity of 1.9 × 10²³ W/cm².
L. Senje, M. Coughlan, D. Jung, M. Taylor, G. Nersisyan, D. Riley, C. L. S. Lewis, O. Lundh, C.-G. Wahlström, M. Zepf, and B. Dromey
Experimental investigation of picosecond dynamics following interactions between laser accelerated protons and water
Appl. Phys. Lett., 110 :104102 (March 2017)
Abstract:
We report direct experimental measurements with picosecond time resolution of how high energy protons interact with water at extreme dose levels (kGy), delivered in a single pulse with the duration of less than 80 ps. The unique synchronisation possibilities of laser accelerated protons with an optical probe pulse were utilized to investigate the energy deposition of fast protons in water on a time scale down to only a few picoseconds. This was measured using absorbance changes in the water, induced by a population of solvated electrons created in the tracks of the high energy protons. Our results indicate that for sufficiently high doses delivered in short pulses, intertrack effects will affect the yield of solvated electrons. The experimental scheme allows for investigation of the ultrafast mechanisms occurring in proton water radiolysis, an area of physics especially important due to its relevance in biology and for proton therapy.
R. Sanchez, M. Lochmann, R. Jöhren, Z. Andelkovic, D. Anielski, B. Botermann, M. Bussmann, A. Dax, N. Frömmgen, C. Geppert, M. Hammen, V. Hannen, T. Kühl, Y. A. Litvinov, R. Lopez-Coto, T. Stöhlker, R. C. Thompson, J. Vollbrecht, W. Wen, C. Weinheimer, E. Will, D. Winters, and W. Nörtershäuser
Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth
J. Phys. B, 50 :085004 (March 2017)
Abstract:
We have recently reported on the first direct measurement of the 2s hyperfine transition in lithium-like bismuth (209Bi^80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the 1s hyperfine splitting (HFS) in hydrogen-like (209Bi^82+) the so-called specific difference Δ'E=-61.37(36) meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty arises from insufficient knowledge of the ion beam velocity which is determined by the electron-cooler voltage. Two routes to obtain a cooler-voltage calibration are discussed and it is shown that agreement can be reached either between the experimental Δ'E and the theoretical result, or between the two measurements of the HFS in hydrogen-like bismuth, but not both at the same time.
F. Karbstein
Photon Propagation in Slowly Varying Electromagnetic Fields
Russ. Phys. J., 59 :1 (March 2017)
Abstract:
Effective theory of soft photons in slowly varying electromagnetic background fields is studied at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counterpropagating pulsed Gaussian laser beams. Treating the peak field strengths of both laser beams as free parameters, this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set equal to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.