Peer-Review Publications

2018

J. H. Bin, M. Yeung, Z. Gong, H. Y. Wang, C. Kreuzer, M. L. Zhou, M. J. V. Streeter, P. S. Foster, S. Cousens, B. Dromey, J. Meyer-ter-Vehn, M. Zepf, and J. Schreiber
Enhanced Laser-Driven Ion Acceleration by Superponderomotive Electrons Generated from Near-Critical-Density Plasma
Phys. Rev. Lett., 120 :074801 (February 2018)
Abstract:
We report on the experimental studies of laser driven ion acceleration from a double-layer target where a near-critical density target with a few-micron thickness is coated in front of a nanometer-thin diamondlike carbon foil. A significant enhancement of proton maximum energies from 12 to ∼30  MeV is observed when a relativistic laser pulse impinges on the double-layer target under linear polarization. We attributed the enhanced acceleration to superponderomotive electrons that were simultaneously measured in the experiments with energies far beyond the free-electron ponderomotive limit. Our interpretation is supported by two-dimensional simulation results.
J. M. Cole, K. T. Behm, E. Gerstmayr, T. G. Blackburn, J. C. Wood, C. D. Baird, M. J. Duff, C. Harvey, A. Ilderton, A. S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C. D. Murphy, K. Poder, C. P. Ridgers, G. M. Samarin, G. Sarri, D. R. Symes, A. G. R. Thomas, J. Warwick, M. Zepf, Z. Najmudin, and S. P. D. Mangles
Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam
Phys. Rev. X, 8 :011020 (February 2018)
Abstract:
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV) with an intense laser pulse (a₀>10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵ꜀ᵣᵢₜ>30  MeV.
L. Stoyanov, G. Maleshkov, M. Zhekova, I. Stefanov, D. N. Neshev, G.G. Paulus, and A. Dreischuh
Far-field pattern formation by manipulating the topological charges of square-shaped optical vortex lattices
J. Opt. Soc. Am. B, 35 :402 (February 2018)
Abstract:
In this work, we demonstrate experimentally the formation of 10 different structures consisting of bright beams with flat phase fronts in the focus of a lens (i.e., in the artificial far field). The basic structure used is a large, stable, square-shaped optical vortex (OV) array composed of vortices with alternating topological charges (TCs). The TCs of one individual OV, of a subarray of OVs, or of the complete OV lattice were erased/doubled in the cases of perfect superposition (on-site alignment) or are manipulated in phase in the cases of an offset between the vortices (off-site alignment). A dramatic reshaping of the beam is observed in the far field and shown to be in excellent agreement with numerical simulations.
C. Buth, R. Beerwerth, R. Obaid, N. Berrah, L. S. Cederbaum, and S. Fritzsche
Neon in ultrashort and intense x-rays from free electron lasers
J. Phys. B, 51 :055602 (February 2018)
Abstract:
We theoretically examine neon atoms in ultrashort and intense x-rays from free electron lasers and compare our results with data from experiments conducted at the Linac Coherent Light Source. For this purpose, we treat in detail the electronic structure in all possible nonrelativistic cationic configurations using a relativistic multiconfiguration approach. The interaction with the x-rays is described in rate-equation approximation. To understand the mechanisms of the interaction, a path analysis is devised which allows us to investigate what sequences of photoionization and decay processes lead to a specific configuration and with what probability. Thereby, we uncover a connection to the mathematics of graph theory and formal languages. In detail, we study the ion yields and find that plain rate equations do not provide a satisfactory description. We need to extend the rate equations for neon to incorporate double Auger decay of a K-shell vacancy and photoionization shake off for neutral neon. Shake off is included for valence and core ionization; the former has hitherto been overlooked but has important consequences for the ion yields from an x-ray energy below the core ionization threshold. Furthermore, we predict the photon yields from xuv and x-ray fluorescence; these allow one insights into the configurations populated by the interaction with the x-rays. Finally, we discover that inaccuracies in those Auger decay widths employed in previous studies have only a minor influence on ion and photon yields.
L. Skripnikov, S. Schmidt, J. Ullmann, C. Geppert, F. Kraus, B. Kresse, W. Nörtershäuser, A. Privalov, B. Scheibe, V. Shabaev, M. Vogel, and A. Volotka
New Nuclear Magnetic Moment of ²⁰⁹Bi: Resolving the Bismuth Hyperfine Puzzle
Phys. Rev. Lett., 120 :093001 (February 2018)
Abstract:
A recent measurement of the hyperfine splitting in the ground state of Li-like 208Bi80+ has established a "hyperfine puzzle" - the experimental result exhibits a 7σ deviation from the theoretical prediction. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO3)3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF−6 ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.
C. Guo, A. Harth, S. Carlstrom, Y.-C. Cheng, S. Mikaelsson, E. Marsell, C. Heyl, M. Miranda, M. Gisselbrecht, M. Gaarde, K. Schafer, A. Mikkelsen, J. Mauritsson, C. Arnold, and A. L\textquotesingle Huillier
Phase control of attosecond pulses in a train
J. Phys. B, 51 :034006 (February 2018)
Abstract:
Ultrafast processes in matter can be captured and even controlled by using sequences of few-cycle optical pulses, which need to be well characterized, both in amplitude and phase. The same degree of control has not yet been achieved for few-cycle extreme ultraviolet pulses generated by high-order harmonic generation (HHG) in gases, with duration in the attosecond range. Here, we show that by varying the spectral phase and carrier-envelope phase (CEP) of a high-repetition rate laser, using dispersion in glass, we achieve a high degree of control of the relative phase and CEP between consecutive attosecond pulses. The experimental results are supported by a detailed theoretical analysis based upon the semi-classical three-step model for HHG.
C. Kohlfürst, and R. Alkofer
Ponderomotive effects in multiphoton pair production
Phys. Rev. D, 97 :036026 (February 2018)
Abstract:
The Dirac-Heisenberg-Wigner formalism is employed to investigate electron-positron pair production in cylindrically symmetric but otherwise spatially inhomogeneous, oscillating electric fields. The oscillation frequencies are hereby tuned to obtain multiphoton pair production in the nonperturbative threshold regime. An effective mass, as well as a trajectory-based semiclassical analysis, is introduced in order to interpret the numerical results for the distribution functions as well as for the particle yields and spectra. The results, including the asymptotic particle spectra, display clear signatures of ponderomotive forces.
P. Amaro, U. Loureiro, L. Safari, F. Fratini, P. Indelicato, T. Stöhlker, and J. Santos
Quantum interference in laser spectroscopy of highly charged lithiumlike ions
Phys. Rev. A, 97 :022510 (February 2018)
Abstract:
We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes 207Pb79+ and 209Bi80+ due to experimental interest, as well as other examples of isotopes with lower Z, namely 141Pr56+ and 165Ho64+. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.
A. A. Peshkov, A. V. Volotka, A. Surzhykov, and S. Fritzsche
Rayleigh scattering of twisted light by hydrogenlike ions
Phys. Rev. A, 97 :023802 (February 2018)
Abstract:
The elastic Rayleigh scattering of twisted light and, in particular, the polarization (transfer) of the scattered photons have been analyzed within the framework of second-order perturbation theory and Dirac's relativistic equation. Special attention was paid hereby to the scattering on three different atomic targets: single atoms, a mesoscopic (small) target, and a macroscopic (large) target, which are all centered with regard to the beam axis. Detailed calculations of the polarization Stokes parameters were performed for C5+ ions and for twisted Bessel beams. It is shown that the polarization of scattered photons is sensitive to the size of an atomic target and to the helicity, the opening angle, and the projection of the total angular momentum of the incident Bessel beam. These computations indicate more that the Stokes parameters of the (Rayleigh) scattered twisted light may significantly differ from their behavior for an incident plane-wave radiation.
I. Tamer, S. Keppler, M. Hornung, J. Körner, J. Hein, and M.C. Kaluza
Spatio-Temporal Characterization of Pump-Induced Wavefront Aberrations in Yb3 + -Doped Materials
Laser Photon. Rev., 12 :1700211 (February 2018)
Abstract:
Abstract A comprehensive spatio-temporal characterization is presented describing the pump-induced wavefront aberrations in Yb3 + -doped YAG, CaF2, and fluorophosphate glass. Time-resolved interferometric measurements were performed to reveal the profiles of the total optical path differences (OPDs), which are described by the spatio-temporal superposition of thermal as well as electronic contributions, across the free aperture of the considered diode-pumped active materials. These contributions were individually determined by a COMSOL-based thermal profile model along with a detailed characterization of the electronic changes by measuring the single-pass gain and the spatial fluorescence profile. Due to the low quantum defect, the amplitude of the electronic component becomes comparable for all three materials and, in the case of Yb:CaF2, almost completely compensates the thermal component resulting from a pump pulse during the time frame of laser pulse amplification. Finally, all relevant material constants – such as the photoelastic constant and the polarizability difference – could be determined during this investigation, allowing the accurate modeling of the total pump-induced wavefront aberrations and subsequent optimization for laser systems worldwide employing these Yb3 + -doped materials.
S. Schmidt, J. Billowes, M. Bissell, K. Blaum, R. G. Ruiz, H. Heylen, S. Malbrunot-Ettenauer, G. Neyens, W. Nörtershäuser, G. Plunien, S. Sailer, V. Shabaev, L. Skripnikov, I. Tupitsyn, A. Volotka, and X. Yang
The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED
Phys. Lett. B, 779 :324 (February 2018)
Abstract:
The hyperfine structure splitting in the 6p3S3/24→6p27sP1/24 transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ(Bi208)=+4.570(10) μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of −67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.
V. Dinu, and G. Torgrimsson
Trident pair production in plane waves: Coherence, exchange, and spacetime inhomogeneity
Phys. Rev. D, 97 :036021 (February 2018)
Abstract:
We study the trident process in inhomogeneous plane-wave background fields. We obtain compact analytical expressions for all terms in the probability, including the exchange part, for an arbitrarily shaped plane wave. We evaluate the probability numerically using complex deformation of light-front time integrals and derive various analytical approximations. Our results provide insights into the importance of the one-step and exchange parts of the probability relative to the two-step process, and into the convergence to the locally constant field approximation.
K. Hütten, M. Mittermair, S. O. Stock, R. Beerwerth, V. Shirvanyan, J. Riemensberger, A. Duensing, R. Heider, M. S. Wagner, A. Guggenmos, S. Fritzsche, N. M. Kabachnik, R. Kienberger, and B. Bernhardt
Ultrafast quantum control of ionization dynamics in krypton
Nat. Commun., 9 :719 (February 2018)
Abstract:
Ultrafast spectroscopy with attosecond resolution has enabled the real time observation of ultrafast electron dynamics in atoms, molecules and solids. These experiments employ attosecond pulses or pulse trains and explore dynamical processes in a pump–probe scheme that is selectively sensitive to electronic state of matter via photoelectron or XUV absorption spectroscopy or that includes changes of the ionic state detected via photo-ion mass spectrometry. Here, we demonstrate how the implementation of combined photo-ion and absorption spectroscopy with attosecond resolution enables tracking the complex multidimensional excitation and decay cascade of an Auger auto-ionization process of a few femtoseconds in highly excited krypton. In tandem with theory, our study reveals the role of intermediate electronic states in the formation of multiply charged ions. Amplitude tuning of a dressing laser field addresses different groups of decay channels and allows exerting temporal and quantitative control over the ionization dynamics in rare gas atoms.
M. Zürch, A. Guggenmos, R. Jung, J. Rothhardt, C. Späth, J. Tümmler, S. Demmler, S. Haedrich, J. Limpert, A. Tünnermann, U. Kleineberg, H. Stiel, and C. Spielmann
Coherent Diffraction Imaging with Tabletop XUV Sources
X-Ray Lasers 2016 ( 2018)
DOI
A. A. Bondarevskaya, D. V. Chubukov, E. A. Mistonova, K. N. Lyashchenko, O. Y. Andreev, A. Surzhykov, L. N. Labzowsky, G. Plunien, D. Liesen, F. Bosch, and T. Stöhlker
Considerations towards the possibility of the observation of parity nonconservation in highly charged ions in storage rings
Phys. Scripta, 93 :025401 (January 2018)
Abstract:
The feasibility of an experiment for the observation of parity nonconserving effects using He-like highly charged ions in storage rings is discussed theoretically. The basic idea is the observation of an asymmetry in the emission of the hyperfine quenched transition (1s2s)¹S₀\to (1s)²¹S₀+γ with respect to the direction of a beam of ions with polarized nuclei. It will be shown, that for such an experiment 151Eu^61+ ions with nuclear spin I=5/2 in the excited electronic state (1s2s)¹S₀ with zero total electron angular momentum and polarized nuclei are the best available candidates. The nuclei can be polarized if H-like Eu^62+ ions capture an electron from a polarized electron beam which overlays the ion beam on some part of the ring and travels with nearly the same velocity. It is suggested, to monitor steadily the degree of the nuclear polarization by the observation of the selective laser excitation and subsequent decay of the Zeeman sublevels of the excited hyperfine states of the ionic ground state. Estimates for the observation time aiming at an accuracy of PNC measurement of about 0.1 % are given.
V. Kharin, D. Seipt, and S. Rykovanov
Higher-Dimensional Caustics in Nonlinear Compton Scattering
Phys. Rev. Lett., 120 :044802 (January 2018)
Abstract:
A description of the spectral and angular distributions of Compton scattered light in collisions of intense laser pulses with high-energy electrons is unwieldy and usually requires numerical simulations. However, due to the large number of parameters affecting the spectra such numerical investigations can become computationally expensive. Using methods of catastrophe theory we predict higher-dimensional caustics in the spectra of the Compton scattered light, which are associated with bright narrow-band spectral lines, and in the simplest case can be controlled by the value of the linear chirp of the pulse. These findings require no full-scale calculations and have direct consequences for the photon yield enhancement of future nonlinear Compton scattering x-ray or gamma-ray sources.
P. Hilz, T. M. Ostermayr, A. Huebl, V. Bagnoud, B. Borm, M. Bussmann, M. Gallei, J. Gebhard, D. Haffa, J. Hartmann, T. Kluge, F. H. Lindner, P. Neumayr, C. G. Schaefer, U. Schramm, P. G. Thirolf, T. .F. Rösch, F. Wagner, B. Zielbauer, and J. Schreiber
Isolated proton bunch acceleration by a petawatt laser pulse
Nat. Commun., 9 :423 (January 2018)
Abstract:
Often, the interpretation of experiments concerning the manipulation of the energy distribution of laser-accelerated ion bunches is complicated by the multitude of competing dynamic processes simultaneously contributing to recorded ion signals. Here we demonstrate experimentally the acceleration of a clean proton bunch. This was achieved with a microscopic and three-dimensionally confined near critical density plasma, which evolves from a 1 µm diameter plastic sphere, which is levitated and positioned with micrometer precision in the focus of a Petawatt laser pulse. The emitted proton bunch is reproducibly observed with central energies between 20 and 40 MeV and narrow energy spread (down to 25%) showing almost no low-energetic background. Together with three-dimensional particle-in-cell simulations we track the complete acceleration process, evidencing the transition from organized acceleration to Coulomb repulsion. This reveals limitations of current high power lasers and viable paths to optimize laser-driven ion sources.
R. Obaid, C. Buth, G. L. Dakovski, R. Beerwerth, M. Holmes, J. Aldrich, M.-F. Lin, M. Minitti, T. Osipov, W. Schlotter, L. S. Cederbaum, S. Fritzsche, and N. Berrah
LCLS in-photon out: fluorescence measurement of neon using soft x-rays
J. Phys. B, 51 :034003 (January 2018)
Abstract:
We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.
S. G. Rykovanov, J. W. Wang, V. Yu. Kharin, B. Lei, C. B. Schroeder, C. G. R. Geddes, E. Esarey, and W. P. Leemans
Plasma Channel Undulator for Narrow-Bandwidth X-Ray Generation
X-Ray Lasers 2016 ( 2018)
DOI
H. Gies, and R. Sondenheimer
Renormalization group flow of the Higgs potential
Philos. Trans. Royal Soc. A, 376 :1 (January 2018)
Abstract:
We summarize results for local and global properties of the effective potential for the Higgs boson obtained from the functional renormalization group, which allows one to describe the effective potential as a function of both scalar field amplitude and renormalization group scale. This sheds light onto the limitations of standard estimates which rely on the identification of the two scales and helps in clarifying the origin of a possible property of meta-stability of the Higgs potential. We demonstrate that the inclusion of higher-dimensional operators induced by an underlying theory at a high scale (GUT or Planck scale) can relax the conventional lower bound on the Higgs mass derived from the criterion of absolute stability. This article is part of the Theo Murphy meeting issue "Higgs cosmology".
C. Goy, M. Potenza, S. Dedera, M. Tomut, E. Guillerm, A. Kalinin, K.-O. Voss, A. Schottelius, N. Petridis, A. Prosvetov, G. Tejeda, J. Fernandez, C. Trautmann, F. Caupin, U. Glasmacher, and R. Grisenti
Shrinking of Rapidly Evaporating Water Microdroplets Reveals their Extreme Supercooling
Phys. Rev. Lett., 120 :015501 (January 2018)
Abstract:
The fast evaporative cooling of micrometer-sized water droplets in a vacuum offers the appealing possibility to investigate supercooled water—below the melting point but still a liquid—at temperatures far beyond the state of the art. However, it is challenging to obtain a reliable value of the droplet temperature under such extreme experimental conditions. Here, the observation of morphology-dependent resonances in the Raman scattering from a train of perfectly uniform water droplets allows us to measure the variation in droplet size resulting from evaporative mass losses with an absolute precision of better than 0.2%. This finding proves crucial to an unambiguous determination of the droplet temperature. In particular, we find that a fraction of water droplets with an initial diameter of 6379±12  nm remain liquid down to 230.6±0.6  K. Our results question temperature estimates reported recently for larger supercooled water droplets and provide valuable information on the hydrogen-bond network in liquid water in the hard-to-access deeply supercooled regime.
J. Limpert
Toward multi-kW femtosecond fiber lasers based on mutlicore fibers
2018 IEEE Photonics Society Summer Topical Meeting Series (SUM) ( 2018)
DOI

2017

H. Gies, T. Hellwig, A. Wipf, and O. Zanusso
A functional perspective on emergent supersymmetry
J. High Energ. Phys., 2017 :132 (December 2017)
Abstract:
We investigate the emergence of N = 1 supersymmetry in the long-range behavior of three-dimensional parity-symmetric Yukawa systems. We discuss a renormalization approach that manifestly preserves supersymmetry whenever such symmetry is realized, and use it to prove that supersymmetry-breaking operators are irrelevant, thus proving that such operators are suppressed in the infrared. All our findings are illustrated with the aid of the ϵ-expansion and a functional variant of perturbation theory, but we provide numerical estimates of critical exponents that are based on the non-perturbative functional renormalization group.
C. Leithold, J. Reislöhner, H. Gies, and A. N. Pfeiffer
Characterization of two ultrashort laser pulses using interferometric imaging of self-diffraction
Opt. Lett., 42 :5246 (December 2017)
Abstract:
Noncollinear pulse characterization methods can be applied to over-octave spanning waveforms, but geometrical effects in the nonlinear medium such as beam smearing and critical sensitivity to beam alignment hinder their accurate application. Here, a method is introduced for the temporal and spatial characterization of two pulses by interferometric, spectrally resolved imaging of self-diffraction. Geometrical effects are resolved by the method and, therefore, do not limit the accuracy. Two methods for quantitative pulse retrieval are presented. One method is analytical and very fast; the other method is iterative and more robust if applied to noisy data.
J. S. M. Ginges, A. V. Volotka, and S. Fritzsche
Ground-state hyperfine splitting for Rb, Cs, Fr, Ba⁺, and Ra⁺
Phys. Rev. A, 96 :062502 (December 2017)
Abstract:
We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb, 33Cs, and 211Fr and alkali-metal-like ions 135Ba^+ and 225Ra^+, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.