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A B S T R A C T

Quantum electrodynamics (QED) is the first quantum field theory that describes all
phenomena associated with electrically charged particles. Despite its mathematical
complexity, it is quite effective in describing and predicting experimental results. With
the introduction of lasers, atomic spectroscopy is constantly evolving, contributing
to QED testing and continuous improvements in the precision of physical constants
determination. Atomic systems offer many opportunities for high-precision QED
tests. In the present dissertation, we focus on the magnetic sector of QED: the
hyperfine structure and the Zeeman effect in few-electron ions.
We present the systematic QED treatment of the electron correlation effects in the
ground-state hyperfine structure in lithiumlike ions for the wide range of nuclear
charge numbers Z = 7- 82. The one- and two-photon exchange corrections are
evaluated rigorously within the QED formalism. The electron-correlation contri-
butions due to the exchange by three and more photons are accounted for within
the Breit approximation employing the recursive perturbation theory. The calcula-
tions are performed in the framework of the extended Furry picture, i.e., with the
inclusion of the effective local screening potential in the zeroth-order approxima-
tion. In comparison to previous theoretical computations, we improve the accuracy
of the interelectronic-interaction correction to ground-state hyperfine structure in
lithiumlike ions.
The g factor of a bound electron is a rigorous tool for verifying the Standard Model
and searching for new physics. Recently, a measurement of the g factor for lithiumlike
silicon was reported and it disagrees by 1.7� with theoretical prediction [D. A. Glazov
et al., Phys. Rev. Lett. 123, 173001 (2019)]. Attempting to resolve this deviation
another theoretical value for silicon has been delivered. It results in a 5� disagreement
with experimental value [V. A. Yerokhin et al., Phys. Rev. A 102, 022815 (2020)]. We
perform large-scale high-precision computations of the interelectronic-interaction and
many-electron QED corrections to determine the cause of this disagreement. Similar
to the case of hyperfine splitting, we carry out the calculations within the extended
Furry picture of QED. And we carefully analyze the final values’ dependence on the
binding potential. As a result, the agreement between theory and experiment for
the g factor of lithiumlike silicon improves significantly. We also present the most
accurate theoretical prediction for lithiumlike calcium too, which perfectly agrees
with the experimental value.
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Z U S A M M E N FA S S U N G

Die Quantenelektrodynamik (QED), die erste Quantenfeldtheorie, beschreibt alle
Phänomene, die mit elektrisch geladenen Teilchen verbunden sind. Trotz ihrer ma-
thematischen Komplexität ist sie sehr effektiv bei der Beschreibung und Vorhersage
experimenteller Ergebnisse. Mit der Einführung von Lasern entwickelt sich die
Atomspektroskopie ständig weiter und trägt zur Überprüfung der QED und zur
kontinuierlichen Verbesserung der Präzision der Bestimmung physikalischer Kon-
stanten bei. Atomare Systeme bieten viele Möglichkeiten für hochpräzise QED-Tests.
In der vorliegenden Dissertation konzentrieren wir uns auf den magnetischen Sek-
tor der QED: die Hyperfeinstruktur und den Zeeman-Effekt in Ionen mit wenigen
Elektronen.

Wir präsentieren die systematische QED-Behandlung der Elektronenkorrelationsef-
fekte in der Grundzustands-Hyperfeinstruktur in lithiumähnlichen Ionen für den
weiten Bereich der Kernladungszahl Z = 7 - 82. Die Ein- und Zwei-Photonen-
Austauschkorrekturen werden im Rahmen des QED-Formalismus rigoros bewertet.
Die Beiträge der Elektronenkorrelation aufgrund des Austausches von drei und
mehr Photonen werden innerhalb der Breit-Approximation unter Verwendung der
rekursiven Störungstheorie berücksichtigt. Die Berechnungen werden im Rahmen
des erweiterten Furry-Bildes durchgeführt, d.h. unter Einbeziehung des effektiven
lokalen Abschirmungspotentials in der Näherung nullter Ordnung. Im Vergleich zu
früheren theoretischen Berechnungen verbessern wir die Genauigkeit der interelek-
tronischen Wechselwirkungskorrektur der Hyperfeinstruktur im Grundzustand in
lithiumähnlichen Ionen.

Der g-Faktor eines gebundenen Elektrons ist ein rigoroses Werkzeug zur Überprü-
fung des Standardmodells und bei der Suche nach neuer Physik. Kürzlich wurde eine
Messung des g-Faktors für lithiumähnliches Silizium berichtet, die mit der theoreti-
schen Vorhersage um 1.7� nicht übereinstimmt [D. A. Glazov textit et al., Phys. Rev.
Lett. 123, 173001 (2019)]. Bei dem Versuch, diese Abweichung zu beheben, wurde ein
weiterer theoretischer Wert für Silizium geliefert. Dieser führt zu 5� Abweichung
von dem experimentellen Wert [V. A. Yerokhin textit et al., Phys. Rev. A 102, 022815
(2020)]. Wir führen groß angelegte hochpräzise Berechnungen der interelektronischen
Wechselwirkung und Viel-Elektronen-QED-Korrekturen durch, um die Ursache die-
ser Abweichung zu bestimmen. Ähnlich wie bei der Hyperfeinaufspaltung führen
wir die Berechnungen innerhalb des erweiterten Furry-Bildes der QED durch. Zudem
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analysieren wir sorgfältig die Abhängigkeit der Ergebnisse vom Bindungspotential.
Als Resultat wurde die Übereinstimmung zwischen Theorie und Experiment für den
g-Faktor lithiumähnlichen Siliziums signifikant verbessert. Zusätzlich präsentieren
wir die bisher genaueste theoretische Vorhersage für lithiumähnliches Calcium, die
perfekt mit dem experimentellen Wert übereinstimmt.
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1
I N T R O D U C T I O N

Quantum electrodynamics (QED) is a field theory that describes all of the phenomena
associated with charged particles interacting via photon exchange. Since it describes
the electromagnetic interaction from fundamental principles, it models other interac-
tions included in the Standard Model of particle physics. Lamb and Retherford, 1947
discovered experimentally the difference in energy between the 2s1/2 and 2p1/2 states
in hydrogen that was not predicted by the Dirac equation. This discovery marked
the beginning of QED. Later, Kusch and Foley, 1948 experimentally observed the
anomalous magnetic moment of the electron. As a result of these two discoveries,
Bethe, 1947; Feynman, 1949b; Feynman, 1949a; Schwinger, 1948a; Schwinger, 1948b;
Schwinger, 1949b; Schwinger, 1949a; Tomonaga, 1946; Koba et al., 1947a; Koba et al.,
1947b; Dyson, 1949b; Dyson, 1949a; Dyson, 1952 and many others started to develop
the QED theory as a physical description of the electromagnetic interaction that is
consistent with both special relativity and quantum physics.

Atomic spectroscopy has advanced steadily since the invention of lasers, contribut-
ing to QED tests. Atomic systems offer a variety of possibilities for high-precision
QED tests. In the present thesis we focus on the magnetic sector of QED: the hyper-
fine structure and the Zeeman effect in few-electron ions.

The interaction of bound electrons with the magnetic field of a nucleus with
nonzero spin results in the hyperfine splitting (hfs) of atomic energy levels. The
first measurements of hyperfine structure in hydrogenlike ions (Klaft et al., 1994;
Crespo López-Urrutia et al., 1996; Crespo López-Urrutia et al., 1998; Seelig et al.,
1998; Beiersdorfer et al., 2001) sparked intense research into hfs in highly charged,
few-electron ions. These ions offer unique opportunities to test QED in the most
intense electric and magnetic fields. Indeed, in the case of hydrogenlike 209Bi, the
electron in the 1s state is exposed to a magnetic field of about 104 T on average. Such
a magnetic field is several orders of magnitude stronger than that produced by the
most powerful superconducting magnets.

We note that at the origin, the hyperfine interaction operator is singular. As a result,
the hfs is extremely sensitive to the magnetization distributions of the nucleus (the
so-called Bohr-Weisskopf effect). The uncertainty of the theoretical value of the hfs is
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2 introduction

determined by a lack of understanding of nuclear characteristics, and it defines the
limit for any precision QED testing. Therefore, direct comparisons between theory
and experiment for H-like ions can not be used to assess QED effects on the hfs. To
get around this issue, it was suggested by Shabaev et al., 2001 to consider a specific
difference in hfs values in hydrogenlike, �E(1s), and lithiumlike, �E(2s), of the same
heavy isotope

�
0
E = �E

(2s) - ⇠hfs�E
(1s). (1.1)

Here parameter ⇠hfs is calculated theoretically in such a way that the Bohr-Weisskopf
effect in the specific difference �0

E is canceled. It was demonstrated by Shabaev et al.,
2001 that both the parameter ⇠hfs and the specific difference are very stable in terms
of possible modifications of nuclear models and nuclear parameters. This implies
that both ⇠hfs and �0

E can be accurately assessed. Thus, in the case of 209 Bi, precise
calculation by Volotka et al., 2012 yields ⇠hfs = 0.16886. As a result of studying the
specific difference, stringent tests of QED in strong fields can be achieved.

This proposal marked the beginning of precise experiments on hfs in H- and Li-like
bismuth ions, the accuracy of which has already reached less than 0.002% (Lochmann
et al., 2014; Ullmann et al., 2015; Sánchez et al., 2017; Ullmann et al., 2017). However,
it was only recently discovered that there is a 7� discrepancy between experimental
(Ullmann et al., 2017) and theoretical (Volotka et al., 2012) values of the specific
difference in 209Bi. In the meantime, the inaccurate value of the nuclear magnetic
moment of 209Bi has been identified as the cause of this discrepancy. A new value
of the magnetic moment, obtained in a recent NMR experiment along with elabo-
rated magnetic shielding calculations, differs considerably from the tabular value
(Skripnikov et al., 2018). Even though the current value brings a specific difference
into agreement, the test of QED in 209Bi is limited by the present value’s substantially
higher uncertainty. The uncertainty caused by the magnetic moment, in particular,
is approximately one order of magnitude greater than other uncertainties in the
theoretical value of the specific difference (Nörtershäuser et al., 2019). In this thesis,
we expand the computations to other Li-like ions to advance the QED test with the
hfs.

The interaction of the bound electron with an external constant magnetic field
causes another effect, known as Zeeman splitting of the energy levels. The Zee-
man effect in highly charged ions has been the focus of extensive theoretical and
experimental research over the last several decades. In hydrogenlike carbon and
silicon ions, the bound electron g factor is now measured with a relative precision
of a few parts in 10

11 (Sturm et al., 2011; Sturm et al., 2013; Sturm et al., 2014).
These measurements, together with excellent theoretical studies (Blundell et al., 1997;



introduction 3

Persson et al., 1997; Beier, 2000; Karshenboim, 2000; Karshenboim et al., 2001; Glazov
and Shabaev, 2002; Shabaev and Yerokhin, 2002; Nefiodov et al., 2002; Yerokhin
et al., 2002; Yerokhin et al., 2004; Pachucki et al., 2005b; Pachucki et al., 2005a; Lee
et al., 2005; Jentschura, 2009; Yerokhin and Harman, 2013; Czarnecki and Szafron,
2016; Yerokhin and Harman, 2017; Czarnecki et al., 2018; Czarnecki et al., 2020), have
resulted in the most exact electron mass value to date (Sturm et al., 2014; Köhler
et al., 2015; Zatorski et al., 2017). Furthermore, the current experimental methods
allow for high-precision g-factor measurements in few-electron ions (Wagner et al.,
2013; Lindenfels et al., 2013; Köhler et al., 2016; Glazov et al., 2019a; Arapoglou et al.,
2019). Thus, recent experiments with Li-like ions have reported results with eleven
significant digits (Köhler et al., 2016; Glazov et al., 2019a), achieving an accuracy
equivalent to that of H-like ions.

The bound-electron g factor joins the group of observables that define our under-
standing of fundamental physics due to the extraordinary accuracy reached in both
experiments and theory. The measurement of the g-factor isotope shift with Li-like
calcium ions (Köhler et al., 2016), for example, has allowed the relativistic nuclear
recoil theory to be tested in the presence of a magnetic field. This measurement
made it possible to investigate bound-state QED effects in the strong-field domain
beyond the Furry picture (Shabaev et al., 2017; Malyshev et al., 2017b). The fine struc-
ture constant ↵ is anticipated to be determined independently using high-precision
bound-electron g-factor experiments and theoretical analyses (Shabaev et al., 2006;
Volotka and Plunien, 2014; Yerokhin et al., 2016). Furthermore, one can look for
effects beyond the Standard Model (Debierre et al., 2020). While calcium is the
heaviest system measured to date, the most fascinating effects, such as new physics,
tend to become more apparent as the nuclear charge number Z increases. As a result,
the middle-Z ions are primarily used as a prototype to test theoretical methodologies,
which still need to be improved to meet experimental precision and finally implement
these exciting concepts.

With an uncertainty of about 10-9, the first measurements of the g-factor were
carried out using a Penning trap with Li-like silicon (Wagner et al., 2013) and calcium
(Köhler et al., 2016) ions. The 15-fold improved experimental result for 28Si11+ was
just reported by Glazov et al., 2019a, making it the most precise g-factor value for
few-electron ions at the moment. A variety of QED and nuclear effects should be
thoroughly taken into account in theory to match the experimental accuracy.

The most precise theoretical g-factor value for 28Si11+ at the time was determined
by Glazov et al., 2019a, gth,2019 = 2.000 889 894 4 (34), and it was found to be 1.7�
away from the experimental value, gexp,2019 = 2.000 889 888 45 (14), provided ibid.
The higher-order many-electron effects were accurately treated within the perturba-
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tion theory, which contributed to the improvement of the final result. The calculations
were done using the extended Furry picture, which includes an effective screening
potential in the Dirac equation. Yerokhin et al., 2020 conducted an independent
evaluation of the screened QED diagrams in an attempt to resolve the discrepancy.
Unlike Glazov et al., 2019a, the calculations were carried out using the usual Furry
picture, i.e., based on the Dirac equation with the Coulomb potential. The non-
relativistic quantum electrodynamics (NRQED) approach was used to assess the
higher-order many-electron effects to the leading order in ↵Z. As a consequence,
gth,2020 = 2.000 889 896 3 (15) Yerokhin et al., 2020 was discovered to be a new theoreti-
cal value for 28Si11+. The theoretical error bar for gth,2019 and gth,2020 is determined by
estimating the unknown higher-order many-electron QED effects and the numerical
uncertainty of the computed contributions. Even though higher-order many-electron
effects in the original Furry picture are usually more significant than in the extended
Furry picture, the corresponding uncertainty indicated by Yerokhin et al., 2020 is
half as much as defined by Glazov et al., 2019a. Overall, within the given error bars,
gth,2019 and gth,2020 are in fair agreement. However, the theoretical value from Ref.
(Yerokhin et al., 2020) differs from the experiment by about 5.2�, implying that the
g-factor "puzzle" has only gotten worse. Yerokhin et al., 2021 recently completed an
independent assessment of the two-photon-exchange contribution and provided new
results for Li-like silicon and calcium. The 3.1� disagreement for silicon remains,
however slightly less than in Ref. (Yerokhin et al., 2020). In the case of calcium,
there is a 4.2� discrepancy between theoretical and experimental (Köhler et al., 2016)
g-factor values.

The screened QED and interelectronic-interaction effects represent one of the most
challenging theoretical contributions. So far, only two groups have conducted a rigor-
ous assessment of these contributions. In this thesis, we examine the many-electron
QED effects in greater depth to shed light on the ongoing discrepancy. We present
large-scale QED computations in the extended Furry picture for various screening
potentials and found that our current g-factor values for silicon and calcium are in
good agreement with the experiment.

This dissertation is organized as follows. We start with the description of the
non-interacting electron-positron and electromagnetic fields in the external field
approximation. In Chap. 2 the main building blocks of the QED are given: we
introduce the Lagrangian of the theory, define the concepts of the original Furry
picture and construct electron and photon propagators.

In Chap. 3 we add the interaction between quantized electron-positron and elec-
tromagnetic fields. We construct the QED perturbation theory: define the evolution
operator in Sec. 3.2 and scattering S-matrix in Sec. 3.3. Subsequently, we focus on the
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perturbation theory for the bound-state QED. Here we begin with a short description
of the historically first approach introduced by Gell-Mann, Low and Sucher (Sec.
3.3.1). Finally, in Sec. 3.4 we formulate the two-time Green’s function formalism used
in the present dissertation.

The last two chapters constitute the main part of the thesis, where we consider
the magnetic sector of the QED theory. In Chap. 4 we investigate the hfs in lithium-
like ions, we focus on the many-electron effects in the hfs, namely, interelectronic-
interaction corrections. We perform the calculations within the extended Furry
picture. As a result, we substantially improve the accuracy of the interelectronic-
interaction contribution to the ground-state hfs in lithiumlike ions in the range
Z = 7- 82.

In Chap. 5 we consider the g factor of lithiumlike silicon and calcium. We improve
the theoretical value of the g factor as well as explain the reasons for the discrepancy
between theory and experiment, established by Glazov et al., 2019a and Yerokhin
et al., 2020. As a result, our new theoretical values are in a much better agreement
with the experimental values: the difference is just 1.4� and 0.6� for silicon and
calcium, respectively.

Finally, in Chap. 6 conclusions and an outlook to future work are given.
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1.1 notations and conventions

The relativistic units ( h = c = me = 1) and the Heaviside charge unit, where ↵ =

e
2
/(4⇡) is a fine structure constant and e < 0 is the electron charge are used through-

out the thesis. When it appears to be convenient, the electron mass me is restored in
the expressions. In addition, we use the following definitions: xµ for contravariant
four-vector, xµ = gµ⌫x

⌫ for covariant four-vector, gµ⌫ is the metric tensor

gµ⌫ = g
µ⌫ =

0

BBBBB@

1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1

1

CCCCCA
,

and ↵µ = �
0
�
µ are the Dirac matrices in their standard representation

↵
0 =

0

@ 1 0

0 1

1

A , ↵ =

0

@ 0 �

� 0

1

A ,

�
0 ⌘ � =

0

@ 1 0

0 -1

1

A , � =

0

@ 0 �

-� 0

1

A ,

and the 2⇥ 2 Pauli matrices

�1 =

0

@ 0 1

1 0

1

A , �2 =

0

@ 0 -i

i 0

1

A , �3 =

0

@ 1 0

0 -1

1

A .

Here 1 is a unit 2⇥ 2 matrix

1 =

0

@ 1 0

0 1

1

A .

We should note that throughout the thesis, we will use the notation 1 for unitary
matrices of other dimensions; for example, see Sec. 3.2 where 1 is a 4⇥ 4 matrix.

• We use the Roman style (p) for scalars, boldface (p) for three vectors, and
italic style p for four-vectors and their components. Four vectors have the form
p = (p0,p) and in coordinate space are also denoted as x = (tx, x).

• The scalar product of four-vectors is defined as kp = k
µ
pµ = k

0
p0 - k · p. The

summing over repeated indices is assumed by default.
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• In expressions containing integrals, the dimension is indicated by style, i.e.,
four-dimensional integrals are given by

R
dx and three-dimensional by

R
dx.

• Superscript ^ also denotes second quantization field operators, which usually
referred to as just quantized field operators: quantized electromagnetic field
operator Âµ(x) and quantized electron-positron field operator  ̂(x) .

• We use superscript (0) to denote free fields. We note, that we understand under
the free electron-positron field operator d (0)(x) the field operator describes
bound electrons. This means the electron is considered in the external field
of a nucleus (Furry picture) or effective potential which is a sum of nucleus
potential and screening potentials formed by core electrons (extended Furry
picture). This interaction is accounted for non-perturbatively.





2
F R E E F I E L D S I N A F U R RY P I C T U R E

The QED theory describes the interaction between charged particles which is medi-
ated by the exchange of the photon. But firstly, let us start from the description of
the noninteracting matter and light. The total Lagrangian density of free fields L0 is
given by

L0 = L
�

0
+L

ee
+

0
, (2.1)

where L
�

0
describes free photons and L

ee
+

0
refers to the free electrons and positrons.

Each term in Eq. (2.1) can be expressed through free electromagnetic field A
(0)
µ (x)

and free Dirac field  (0)(x) as follows

L
�

0
= -

1

4
F
(0)
µ⌫(x)F

µ⌫,(0)(x),

L
ee

+

0
=  

(0)(x) (i�µ@µ -me) 
(0)(x).

(2.2)

Here F
(0)
µ⌫(x) = @µA

(0)
⌫ (x)- @⌫A

(0)
µ (x) denotes the electromagnetic field tensor and

 
(0)(x) ⌘

h
 

(0)(x)
i†
�
0.

In the present thesis we consider ionic systems with the nucleus being a source of
the binding potential Vnucl . To describe such a system one needs to construct a total
Lagrangian density L in the form

L = L
�

0
+L

ee
+

0
+L

nucl
int , (2.3)

where the term L
nucl
int describes the interaction between electrons and nucleus

L
nucl
int = -e 

(0)(x)�µ (0)(x)Anucl
µ (x). (2.4)

Here A
nucl
µ =

✓
V

nucl

e
, 0
◆

is a vector potential associated with the electric field

generated by the nucleus1. We note here, that now  
(0)(x) is a Dirac field in the

1We note that one should make the following substitution in L
�
0 term: A(0)

⌫ (x) ! A
(0)
⌫ (x) +A

nucl
⌫ .

9
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presence of the external potential.
Usually, the Lagrangian density with a subscript 0 (free fields) can be treated exactly,

and any interaction is considered using perturbation theory. But this approach does
not work for the case of ions with high Z, where Z is the nuclear charge number.
Indeed, the binding potential has a form V

nucl
⇠ -↵Z, therefore the interaction

between bound electron and nucleus is proportional to the ↵Z. For the case, for
example, of uranium Z = 92 this expansion parameter reads as ↵Z ⇡ 0.67. Therefore
a perturbation expansion in ↵Z becomes meaningless, and the interaction between
electrons and nucleus has to be considered non-perturbatively. This effectively means
that the interaction term L

nucl
int has to be added to the unperturbed Lagrangian density

L
ee

+

0
which now would describe to the zeroth-order the bound electrons. This is

called the external field approximation, or Furry picture (Furry, 1951). Therefore, in
the framework of the Furry picture Lagrangian density from Eq. (2.3) is nothing else
as unperturbed Lagrangian density L0,F

L0,F ⌘ L
�

0
+L

ee
+

0
+L

nucl
int , (2.5)

and noninteracting (with photon field) electrons and positrons are now defined as

L
ee

+

0,F ⌘ L
ee

+

0
+L

nucl
int . (2.6)

and the free photon field is defined as before by L
�

0,F ⌘ L
�

0
. Then the equation of

motion for free fermion field  (0)(x) is

⇣
i�

µ
@µ -me - e�

µ
A

nucl
µ (x)

⌘
 

(0)(x) = 0, (2.7)

and for free photon field A
(0)
µ (x) in Feynman gauge (Peskin and Schroeder, 1995) is

⇤A
(0)
µ (x) = 0, (2.8)

with ⇤ ⌘ @
2

@t2
-� being d’Alembert operator.

One can solve these Euler-Lagrange equations (2.7)-(2.8) and perform the quantiza-
tion procedure of the corresponding field. Quantization means the transition from
fields to the corresponding operators acting on the state �. By analogy with ordinary
quantum mechanics, the state vector completely characterizes the physical state of
the system of quantized fields. For further details see, i.e. (Itzykson and Zuber, 1980;
Berestetsky et al., 1982).

Here we perform canonical (second) quantization, i.e., represent field operators
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through creation and annihilation operators. Then corresponding free Dirac field
operator d (0) the in Heisenberg picture is defined as

d
 (0)(t, x) =

"n>0X

n

an�n(x)e
-i"nt +

"n<0X

n

b
†
n�n(x)e

-i"nt, (2.9)

where �n(x) are the solutions of the following stationary Dirac equation

hD�n(x) = [-i↵ ·r+ V
nucl (x) +�]�n(x) = "n�n(x), (2.10)

and "n are corresponding eigenvalues. All quantum numbers required to characterize
the state are specified by the multi-index n. We note that in the case when these
quantum numbers are continuous, the sums in Eq. (2.9) must be interpreted as
integrals with proper normalizations. The electron annihilation operator for an
electron in state n is denoted by an, while the positron creation operator for a
positron in state m is denoted by b

†
m. The anticommutation relations are implied by

the canonical equal-time anticommutators for field operators,

⌦
an,a†

m

↵
= �nm, {an,am} =

⌦
a
†
n,a†

m

↵
= 0,

⌦
bn,b†m

↵
= �nm, {bn,bm} =

⌦
b
†
n,b†m

↵
= 0,

{an,bm} =
⌦
an,b†m

↵
=

⌦
a
†
n,bm

↵
=

⌦
a
†
n,b†m

↵
= 0.

(2.11)

The free photon field operator
d
A

(0)
µ (x) in Heisenberg picture can be written as

d
A

(0)
µ (x) =

Z
dkp

2k0(2⇡)3

3X

�=0

h
c(k, �)Aµ

k,�(x)e
-ik

0
t + c

†(k, �)Aµ⇤
k,�(x)e

ik
0
t

i
, (2.12)

where the Feynman gauge is used, and the plane waves A
µ

k,�(x) have the following
form

A
µ

k,�(x) =
✏
µ(k, �)e-ikx

p
2k0(2⇡)3

. (2.13)

Here k and ! ⌘ k
0 =| k | are momentum and energy of the photon, respectively,

✏
µ(k, �) is its polarisation vector which is characterized by helicity �. And, finally,
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c(k, �) and c
†(k, �) annihilates and creates, respectively, a photon with momentum k

and the helicity �. They are subject to the following commutation relations

h
c(k, �), c†

�
k
0, �0
�i

= -g
��

0
2!(2⇡)3�3

�
k - k

0� ,
⇥
c(k, �), c

�
k
0, �0
�⇤

=
h
c
†(k, �), c†

�
k
0, �0
�i

= 0.
(2.14)

We note that the case of � = 0, 3 refers to the unphysical timelike and longitudinal
photons, respectively. Due to the presence of these photons, the theory starts to have
some problems, for example, the norm of the photon state with timelike polarisation
(� = 0) is negative which breaks one of the main postulates of quantum mechanics
and lead to the negative probability to find such a photon! As long as we’re talking
about the free case, the situation isn’t as bad as it appears, simply because a free
electromagnetic field doesn’t exist in nature. However, when moving on to the
theory of interacting fields (Sec. 3.1), one must be careful that interaction does not
excite these unphysical states. To overcome this issue one can use the Gupta-Bleuler
approach (Itzykson and Zuber, 1980) and construct the physical subspace of state
vectors that have positive norm and only the transverse photons (� = 1, 2) contribute
to observable quantities.

For both electron-positron d (0)(x) and electromagnetic
d
A

(0)
µ (x) field operators, one

can introduce propagators, which are nothing more than functions that characterize
the propagation of these fields (or their quantum2) from one act of interaction to
another. The vacuum expectation value of the time-ordered product determines the
free propagator of the electron-positron field

iSF (tx - ty, x, y) = h0|T
h
d
 (0)(x)d (0)(y)

i
|0i

=
i

2⇡

Z
dEe-iE(tx-ty)

X

n

�n(x)�n(y)

E - "n(1- i�)
,

(2.15)

where T denotes the time-ordering operator, �n(x) ⌘ [�n(x)]
†
�
0, and � is a small

positive real number and in the final result, we need to take a limit as � approaches
zero. The propagator of the electron-positron field can be expressed as a function
of energy E and coordinates using the Fourier transform with respect to the time
variables, i. e. SF (tx - ty, x, y) ! SF(E, x, y). The explicit form of SF(E, x, y) is given
by

SF(E, x, y) =
X

n

�n(x)�n(y)

E - "n(1- i�)
. (2.16)

2Electrons (positrons) and photons for [
 (0)(x) and [

A
(0)
µ (x), respectively.
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From Eq. (2.15), one can see that SF (tx - ty, x, y) has poles at the bound states of the
electron and branch cuts from (-1,-me] and [me,+1). And this is not surprising
because the SF (tx - ty, x, y) is a one-particle Green function of the Dirac equation(2.7),
i. e. satisfies the following equation

⇣
�
µ
@µ -me - e�

µ
A

nucl
µ (x)

⌘
SF (tx - ty, x, y) = �(x- y). (2.17)

Similarly, one can define the free photon propagator Dµ⌫ (tx - ty, x - y) as the
vacuum expectation value of time-ordered product

-iDµ⌫ (tx - ty, x - y) =

⌧
0

����T

d
A

(0)
µ (x)

d
A

(0)
⌫ (y)

����� 0
�

=
i

2⇡

Z
d!e

-i!(tx-ty)Dµ⌫ (!, x - y) .
(2.18)

The temporal Fourier-transformed photon propagation function Dµ⌫ (!, x - y) is
given by (Beier, 2000; Soguel et al., 2021)

D
F

µ⌫(!, x - y) =
gµ⌫

4⇡|x - y|
e
i!̃|x-y|, (2.19)

in the Feynman gauge, and by

D
C

00
(!, x - y) =

1

4⇡|x-y|
,

D
C

i0
(!, x - y) = D

C

0j
(x-y;!) = 0,

D
C

ij
(!, x - y) = -

�ije
i!̃|x-y|

4⇡|x-y|
-r(x)

i
r(y)

j

1- e
i!̃|x-y|

4⇡!2|x-y|
,

(2.20)

in the Coulomb gauge. Here !̃ =
p
!2 + i⌘, the branch of the square root is fixed by

the condition Im(!̃) > 0, indexes i, j = 1, 2, 3, and �ij is a usual Kronecker delta.
For later purposes we introduce the operator I(!, x - y) representing the interelec-

tronic interaction mediated via the exchange of virtual photons

I(!, x - y) = e
2
↵
µ
↵
⌫
Dµ⌫(!, x - y). (2.21)
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The interelectronic-interaction operator I(!, x - y) regardless the gauge has the
following properties

I(!, x - y) = I(-!, x - y),

I0(!, x - y) = -I0(-!, x - y),

I0(0, x - y) = 0,

(2.22)

with

I0(!, x - y) ⌘ dI(!, x - y)

d!
. (2.23)

Inserting Eq. (2.19) into Eq. (2.21) one can express I(!, x - y) in Feynman gauge as

IF(!, x - y) = ↵
1-↵x ·↵y

|x- y|
e
i!̃|x-y|, (2.24)

and using Eqs. (2.20) and (2.21) one obtains I(!, x - y) in Coulomb gauge

IC(!, x - y) =↵

 
1-↵x ·↵ye

i!̃|x-y|

|x- y|

+

"
(↵x ·rx) ,

"
(↵y ·ry) ,

e
i!̃|x-y| - 1

!2|x- y|

##!

.

(2.25)

We want to stress that one-particle Green’s functions and propagators are fre-
quently used interchangeably in the literature. Thus, Green’s function G

0(x,y) of
some operator B̂ is defined as its impulse response, i.e. B̂G0(x,y) = �(x- y). Green’s
function G

0(x,y) has a physical meaning: it describes the system’s response to an in-
stant point source �(x-y), which is why it is also known as the source function. In the
present thesis, we define free electron SF (tx - ty, x, y) and photon Dµ⌫ (tx - ty, x - y)

propagators in a way that they coincide with the definition of one-particle Green’s
function (here we use the term one-particle because in our case operator B̂ describes
one particle only) given above. Thus, electron propagator SF ⌘ G

0(x,y), where
G

0(x,y) is a Green’s function of Dirac equation (2.7). Similarly, photon propagator
Dµ⌫ ⌘ G

0(x,y) with G
0(x,y) (for Feynman gauge) being a Green’s function of the

wave equation (2.8). Note that our definition of propagators coincide with one intro-
duced by Berestetsky et al., 1982; Weinberg, 2005.

However, it is more convenient to interpret Green’s function as a correlation func-
tion and give a different definition. Therefore, we will understand under one-particle
Green’s function G(x,y) a vacuum expectation of the time-ordered product of either
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two electron-positron or two electromagnetic field operators (in the notation of Peskin
and Schroeder, 1995 it is propagators of electron and photon, respectively)

G(x,y) ⌘

2

66664

D
0

��� T
h
d
 (0)(x)d (0)(y)

i��� 0
E

for electron

⌧
0

���� T

d
A

(0)
µ (x)

d
A

(0)
⌫ (y)

����� 0
�

for photon

(2.26)

We note that one particle Green’s function G(x,y) coincide with G
0(x,y) within a

constant factor ±i. The generalization of the G for the case of N particles will be
made later in Subsec. 3.4.2.





3
B O U N D - S TAT E Q E D I N E X T E R N A L F I E L D A P P R O X I M AT I O N

In this chapter, we consider interacting electron-positron and electromagnetic fields
and construct the QED perturbation theory. Namely, we build the time-evolution
operator in Sec. 3.2 and present its Dyson series. Then in Sec. 3.3 we define the
central object of the quantum field theory, the S-matrix. In the following Sec. 3.3.1,
we consider the bound-state QED theory. We describe the formalism that Gell-Mann,
Low, and Sucher first introduced for calculating the energy shifts of states from the
discrete spectrum, the adiabatic S-matrix approach. And we conclude this chapter
by formulating the two-time Green’s function formalism that is used in the current
dissertation for computations of the QED corrections to the hyperfine splitting and g

factor of few-electron ions.

3.1 interacting fields

We start this subsection with a note that from now on we will work in the framework
of an external field approximation (Furry picture) unless otherwise stated. We saw in
the previous subsection, that any interaction with external classical electromagnetic
field is introduced by the minimal coupling scheme, see Eq. (2.4). One can do the
same for the case of the second-quantized operators of Dirac  ̂(x) and electromagnetic
field Âµ(x) and construct the corresponding Lagrangian density L̂int ,

L̂int = -e
ˆ̄
 (x)�µ ̂(x)Âµ(x), (3.1)

17
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we note that now  ̂(x) and Âµ(x) are interacting fields, therefore index (0) is omitted.
Then the total QED Lagrangian density L̂QED reads as 1,2

L̂QED = L̂
�

0,F + L̂
ee

+

0,F + L̂int . (3.2)

Here L̂
�

0,F ⌘ L̂
�

0 and L̂
ee

+

0,F are given by Eqs.(2.2), (2.6) where one needs to make the
following replacement

 
(0)(x) �!  ̂(x),

A
(0)(x) �! Â(x).

(3.3)

One can see that the dynamics of both field operators  ̂(x) and Â(x) are included
in the same Lagrangian (3.2) density so that each can change under the influence
of the other. This results in a non-linear system which is usually only solved using
perturbative techniques. These are the Feynman diagrams which we will discuss later.
Since we are generally unable to find an exact expression for  ̂(x) and Â(x) , we
rely on a perturbative method, with L̂int considered as a small perturbation to L̂0,F.
Indeed, L̂int depends on the coupling constant e and the perturbative expansion will
be a power series of coupling constant ↵ 3.

From L̂QED one can obtain the corresponding full QED Hamiltonian ĤQED

ĤQED = Ĥo,F + Ĥint, (3.4)

where the first term, Ĥo,F, is unperturbed Hamiltonian, and the second one, Ĥint, is
the interaction Hamiltonian. Then usual Schrödinger equation reads as 4

i
@ (t)

@t
=
�
Ĥ0,F + Ĥint

�
 (t). (3.5)

1We note that we did not include in L̂QED mass and charge counterterms, therefore the derivations
should be understood on a formal level.

2Strictly speaking, one needs to consider normal ordered QED Lagrangian density L̂QED !: L̂QED :,
when all creation operators are to the left of all annihilation operators in the product. This is usually
done to remove divergence arising from the infinite energy of the vacuum Evac. Since the absolute
energies are not measured observables one can safely subtract the infinite constant Evac, which is
automatically done by introducing the normal product : : (Bjorken and Drell, 1965). Later, when we
introduce the interaction Hamiltonian, we will write it explicitly.

3One can show that the perturbation series has the form
P1

L=0 e
E-2+2L

aL = e
E-2

P1
L=0 ↵

L
aL,

where L is number of loops, and E is number of external lines (Peskin and Schroeder, 1995).
4Here the operators Ĥ0,F and Ĥint are operators in Schrödinger representation. Therefore, one first

needs to transform field operators in L̂QED (3.2) from the Heisenberg picture to Schrödinger one. We
also notice that the Hamiltonian is expressed in the same way in terms of the field operators in the
Schrödinger and Heisenberg representations.



3.1 interacting fields 19

In the absence of interaction, i.e., for Ĥint = 0, the state vector  ⌘ � describes the
motion of a given number of free particles with definite momenta and spins. The Ĥint

operator describes how these particles interact with one another and with themselves.
Now let us introduce the following state vector

 
IR(t) = e

iĤ0,Ft (t). (3.6)

It is simple to demonstrate that  IR(t) meets the following condition

i
@ 

IR(t)

@t
= e

iĤ0,FtĤinte
-iĤ0,Ft 

IR(t), (3.7)

or

i
@ 

IR(t)

@t
= Ĥ

IR
int(t) 

IR(t), (3.8)

where

Ĥ
IR
int(t) = e

iĤ0,FtĤinte
-iĤ0,Ft, (3.9)

is the perturbation Hamiltonian in some new representation. In contrast to the
Schrödinger operator Ĥint, this operator explicitly depends on time. In general, in
this so-called interaction representation, an arbitrary operator Q

IR(t) is related to the
Schrödinger operator QS as follows

Q
IR(t) = e

iĤ0,FtQSe
-iĤ0,Ft. (3.10)

This implies that in the representation of the interaction, the time dependence of the
operators is determined by the Hamiltonian of free particles because differentiating
(3.10) with respect to t yields

i
@Q

IR(t)

@t
=
h
Q

IR(t), Ĥ0,F

i
, (3.11)

where we used that ĤIR
0

= Ĥ0,F. Thus, in the interaction representation, the field op-
erators satisfy the equations of motion of the free field, whereas the time dependence
of the system’s state vector  (t) is determined solely by the interaction Hamiltonian
(in interaction picture), according to (3.8). Therefore, in the interaction picture, the
interacting field operators  ̂IR(x) and Â

IR
µ (x) have the same spectral representation

as the free field operators, see Eqs. (2.9) and (2.12), respectively. Furthermore, the
propagators for  ̂IR(x) and Â

IR
µ (x) correspond to the definitions given by Eqs. (2.15)
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and (2.18) for free electron-positron d
 (0)(x) and free electromagnetic

d
A

(0)
µ (x) field

operators.

3.2 time-evolution operator

The effect of the interaction is hidden in the state vector  IR(t). As a result, the
Schrödinger equation (3.8) serves as the starting point for a perturbative approach to
the problem of interacting fields. We define the time-evolution operator (also known
as the Dyson operator) ÛIR (t, t0) to describe the connection between the state vectors
at t0 and t1 as

 
IR(t) = Û

IR (t, t0) IR (t0) . (3.12)

Inserting Eq. (3.12) into Eq. (3.8) one obtains the following equation for the evolution
operator ÛIR (t, t0)

i
@

@t
Û

IR (t, t0) = Ĥ
IR
int(t)Û

IR (t, t0) , (3.13)

with the boundary condition

Û
IR (t0, t0) = 1.

The differential equation (3.13) is equivalent to the integral equation

Û
IR (t, t0) = 1 - i

Z t

t0
dt1ĤIR

int (t1) Û
IR (t1, t0) , (3.14)

which can be solved by the iteration procedure (Dyson, 1949b)

Û
IR (t, t0) = 1 - i

Z t

t0
dt1ĤIR

int (t1)+

+ (-i)2
Z t

t0
dt1

Z t1

t0
dt2ĤIR

int (t1) Ĥ
IR
int (t2) + · · · .

(3.15)

Then the perturbation series for the time-evolution operator can be found using Eq.
(3.15)

Û
IR (t, t0) = 1 +

1X

n=1

(-i)n

n!

Z t

t0
dt1 · · ·

Z t

t0
dtnT

h
Ĥ

IR
int (t1) · · · ĤIR

int (tn)
i

, (3.16)
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where T is the time-ordered product operator. This expansion provides a basis for
QED calculations by perturbation theory in ↵.

We observe that the series (3.16) can be formally summed up, yielding the time-
ordered exponential function

ÛIR (t, t0) = T

e
-i

Rt
t0

dtĤIR
int(t)

�
. (3.17)

However, in essence, this is merely a more compact version of the Eq. (3.16). The
Hamiltonian ĤIR

int may be written in any local field theory as an integral over the
Hamilton density Ĥ

IR
int, which consists of field operator products and perhaps their

derivatives. Thus, one can rewrite Eq. (3.17) as

ÛIR (t, t0) = T

e
-i

Rt
t0

dxĤ
IR
int (x)

�
. (3.18)

In Eq. (3.18) the time and the coordinates appear on an equal footing and, as a result,
ÛIR (t, t0) is clearly relativistically invariant.

The time-evolution operator Û
IR (t, t0) is most commonly used in scattering pro-

cesses. However, by using the adiabatic S-matrix formalism of Gell-Mann, Low, and
Sucher or the two-time Green’s function method, ÛIR (t, t0) can be used to calculate
the energy shift of a bound level under the influence of interaction, see Secs. 3.3.1
and 3.4.2, respectively.

3.3 S-matrix formalism

The scattering matrix (S-matrix) is an important concept in both quantum field
theory and ordinary quantum mechanics. It describes the probability amplitude for
a process in which the system transitions from an initial to a final state as a result of
an interaction. When working in the interaction picture, the time-evolution operator
is the best tool for evaluating the scattering matrix. We introduce the time-dependent
state vector  IR(t), which in the limit t ! -1 has evolved from the "free" initial state
�i

lim
t!-1

 
IR(t) = �i, (3.19)

where �i is eigenfunction of the operator Ĥo,F. We should point out that such a
consideration has a flaw: the vacuum fluctuations caused by the interaction between
quantum fields do not completely disappear in the asymptotical region. As a result,
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this approach to constructing the S-matrix is somewhat naive. This is on purpose:
the approach works in practice, and technical issues can be addressed when a slightly
more rigorous approach is used, with so-called in and out fields introduced (Greiner
and Reinhardt, 1996; Schweber, 1961; Bjorken and Drell, 1965). The end result is, of
course, the same as when taking the shorter route.

According to the definition, the S-matrix element is a projection of the state vector
 

IR(t) on the final state �f, in the limit t ! +1

Sfi = lim
t!+1

D
�f |  

IR(t)
E
=
⌦
�f|Ŝ|�i

↵
, (3.20)

where the final state �f similarly to the �i also describes free (bare) particles. Making
use of Eqs. (3.12) and (3.19) one can express S-matrix element in terms of the time-
evolution operator as follows

Sfi = lim
t2!+1

lim
t1!-1

D
�f

���ÛIR (t2, t1)
����i

E
. (3.21)

Comparing Eq. (3.21) with Eq. (3.20), we get the following definition of the Ŝ-operator

Ŝ = Û
IR(1,-1), (3.22)

or according to Eq. (3.15)

Ŝ = 1 +
1X

n=1

(-i)n

n!

Z
dt1 · · ·

Z
dtnT

h
ĤIR

int (t1) · · · ĤIR
int (tn)

i
= T

h
e
-i

R
dtĤR

int(t)
i

. (3.23)

Calculating the S-matrix element observable quantities, one can derive, e. g., scatter-
ing cross sections and decay rates by taking the square and doing certain kinematical
manipulations.

3.3.1 Adiabatic S-matrix formalism of Gell-Mann, Low, and Sucher

In earlier sections, we showed how to get the perturbation series for the time-
evolution operator Û

IR (t, t0) within the framework of the interaction picture. This
gives a systematic way to build the S-matrix for scattering problems. Furthermore,
the approach allows for the calculation of the energy shifts of states from the discrete
spectrum.

Here we start consideration again within Schrödinger picture, the moment when
another representation is considered we will denote wave-functions and operators
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with the corresponding label. Let us introduce a discrete eigenstate � of the unper-
turbed Hamiltonian

Ĥ0,F� = E0�. (3.24)

And we want to find the eigenstate  of the full Hamiltonian

Ĥ = Ĥ0,F + �Ĥint, (3.25)

containing some perturbation operator Ĥint

Ĥ = E . (3.26)

The coupling constant � determines the strength of the perturbation, which helps us
keep track of the terms in the perturbation series. If Ĥint is a stationary perturbation,
the time-evolution operator may appear to be the wrong tool to use to describe the
system at first glance. However, the adiabatic switching of the interaction comes to the
rescue here. By modifying the Hamiltonian, the stationary problem is transformed
into a time-dependent one

Ĥ✏(t = 0) = Ĥ , lim
t!±1

Ĥ✏(t) = Ĥ0,F. (3.27)

An explicit prescription for accomplishing this can be expressed in terms of a switch-
ing function

Ĥ✏(t) = Ĥ0,F + �e-✏|t|Ĥint. (3.28)

At asymptotic times t ! ±1, the perturbation operator Ĥint is exponentially damp-
ened off. Of course, because the procedure’s implementation is arbitrary, physical
observables should not be dependent on it. As a result, at the end of the calculation,
it must be possible to take the limit ✏! 0.

Let us now move on to the interaction representation. According to Eq. (3.8), the
equation of motion for the "adiabatic" state vector is given by

i
@ 

IR
✏ (t)
@t

= �e-✏|t|ĤIR
int(t) 

IR
✏ (t), (3.29)
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with the perturbation operator ĤIR
int(t) given by Eq. (3.9). Similarly to Sec. 3.2, one can

obtain the following differential equation for the adiabatic time-evolution operator
Û✏

i
@

@t
Û

IR

✏ (t, t0) = �e-✏|t|ĤIR

int
(t)ÛIR

✏ (t, t0) . (3.30)

According to the Eq. (3.29), the state  IR
✏ (t) in the limit t ! 1 is a constant. As an

initial condition, we require that the state vector approach the unperturbed state
(3.24)

lim
t!-1

 
IR
✏ (t) = �. (3.31)

Also we know, that at t = 0, Ĥ✏(0) = Ĥ, see Eq. (3.27). With all this in mind, one can
conclude that the state

 ✏ ⌘  
IR
✏ (0) = Û

IR

✏ (0,-1)�, (3.32)

in some way is related to the desired solution of the full Hamiltonian (3.26). We
note that this is only true if the perturbation operator is turned on "slowly enough",
otherwise the switching-on will cause artificial dynamical excitations. However, it
can be shown that limit of arbitrarily slow switching, lim✏!0 

IR
✏ (0), does not exist

mathematically! Despite this limitation, Gell-Mann and Low, 1951 demonstrated how
to obtain a meaningful result for the energy of an interacting system. Let us now
outline the main results of their work.

1. The state

 = lim
✏!0

Û
IR
✏ (0,-1)�⌦

�
��ÛIR

✏ (0,-1)
���
↵ ⌘ lim

✏!0

 ✏

h� |  ✏i
, (3.33)

is an eigenstate of the full Hamiltonian, i.e.,

(Ĥ- E) lim
✏!0

 ✏

h� |  ✏i
= 0. (3.34)

This holds true if the limit (3.33) exists and the perturbation series of  in
powers of the coupling constant � is well defined.

2. The following formula can be used to calculate the energy shift of the state  
with respect to � caused by the interaction

�E = E- E0 = lim
✏!0

i✏�
@

@�
ln
D
�

���ÛIR

✏ (0,-1)
����
E

. (3.35)
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Let us note, that the Gell-Mann-Low theorem does not guarantee the existence
of  defined in (3.33). However, if this state can be constructed, the interacting
problem is solved.

Sucher, 1957 later presented the symmetrized form of Eq. (3.35), which became
widely used for the calculations of level shifts for a state �

�E = lim
"!0
�!1

i "�
2

(@/@�)
⌦
�
��Ŝ",�

���
↵

⌦
�
��Ŝ",�

���
↵ , (3.36)

with Ŝ",� being an adiabatic Ŝ-operator

Ŝ",� = T
h
e
(-i�

R
dxe-"|t|ĤIR

int(x))
i

= 1+
1X

j=1

(-i�)j

j!

Z
xj . . .

Z
x1e-"|tj| . . . e-"|t1|T

h
ĤIR

int
�
xj

�
. . . ĤIR

int (x1)
i

.
(3.37)

3.4 green’s function and S-matrix of bound-state qed theory

The exact scattering amplitudes, on the other hand, are more conveniently expressed
in terms of field operators in the Heisenberg representation, where the time depen-
dence is governed by the full QED Hamiltonian ĤQED = Ĥo,F + Ĥint of a system of
interacting particles. We emphasize once more that the full Hamiltonian in Heisen-
berg and Schrödinger is the same. Let us determine the relationship between the
operators in the Heisenberg interaction representations. To simplify the discussion,
we again make the assumption (which will not affect the final result) that the interac-
tion is adiabatically "switched off" when t = -1, i. e. ĤIR

int(t) = 0. Then, for t ! -1,
the Heisenberg and interaction representations coincide, and the wave functions of
the system, �H 5 and  IR , are the same

 
IR(t = -1) = �

H. (3.38)

The wave function in the Heisenberg representation, on the other hand, has no
time dependence (all time dependence on operators!), whereas in the interaction
representation, the time dependence of the wave function has the form (see Eq. (3.12))

 
IR(t) = Û

IR(t,-1) IR(-1). (3.39)

5Throughout this section label H refers to the Heisenberg picture.
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Here Û
IR is given by Eq. (3.17). Comparing Eqs. (3.38) and (3.39), one can get the

following equation

 
IR(t) = Û

IR(t,-1)�H, (3.40)

as the relation between the wave functions in the two representations. The corre-
sponding formula for transforming the field operators, i.e., electron-positron field
operators, has a similar form

 ̂(t, x) = (ÛIR)-1(t,-1) ̂IR(t, x)ÛIR(t,-1)

= Û
IR(-1, t) ̂IR(t, x)ÛIR(t,-1),

(3.41)

and likewise for field operators b and Âµ in Heisenberg representation 6.

3.4.1 One-particle Green’s function: Exact electron and photon propagators

In QED theory, invariant functions, particularly propagators of electron-positron and
electromagnetic fields, play an important role. They are defined in terms of field
operator products and can be calculated in closed form for free fields (see Chap. 2).
For interacting fields, the exact electron SF and photon Dµ⌫ propagators can also be
constructed as a vacuum expectation value of the time-ordered product

iSF (tx - ty, x, y) =
D
0

��� T
h
 ̂(x) ˆ̄

 (y)
i��� 0
E

, (3.42)

-iDµ⌫ (tx - ty, x - y) =
⌦
0
��T
⇥
Âµ(x)Â⌫(y)

⇤�� 0
↵

. (3.43)

We note that the spectral representations (2.15) and (2.18)–(2.20) are not valid because
an exact solution for the interacting fields is no longer available. However, using the
transformation formulas for the field operators discussed above (3.41), the following
formula can be obtained for the exact electron SF propagator

iSF (tx - ty, x, y) =

D
0

��� T
h
 ̂

IR(x) ˆ̄
 

IR(y)
i��� 0
E

h0|Ŝ|0i
, (3.44)

6Here and throughout the thesis the label H for the field operators in Heisenberg representation is
omitted.
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and photon propagator Dµ⌫

-iDµ⌫ (tx - ty, x - y) =

⌦
0
��T
⇥
Â

IR
µ (x)ÂIR

v (y)
⇤�� 0
↵

h0|Ŝ|0i
. (3.45)

For detailed description see, i.e., (Berestetsky et al., 1982; Peskin and Schroeder, 1995).
By substituting the expansion (3.23) for Ŝ-operator in the numerator and denominator
and averaging using Wick’s theorem (see Sec. 3.4.2), we get an expansion of Dµ⌫ and
SF in the power series of ↵. The formulas (3.44) and (3.45) illustrate the relationship
between the one-particle Green’s function and the Ŝ-operator. Later in Sec. 3.4.2, we
adopt the definition (3.44) for the case of N-particle Green’s function formalism used
for calculating QED corrections to the energy shifts of few-electron ions.

3.4.2 N-particle Green’s function: two-time Green’s function formalism

We are now ready to talk about the actual calculations of the QED corrections to
the energy shift of few-electron ions. Historically, the method given in Sec. 3.3.1
was the first approach suited for obtaining formal equations for the energy shift of
a bound-state level (Gell-Mann and Low, 1951; Sucher, 1957). This approach has
been employed in investigations involving high-Z few-electron systems, such as, e.
g., Refs. (Labzowsky et al., 1993; Sapirstein, 1998). However, practical application of
this method revealed that it has several serious drawbacks: the formal expressions
for the so-called reducible diagrams 7 are derived in a very complicated manner, this
method requires a special investigation of the renormalization procedure because the
adibatic Ŝ",� suffers from ultraviolet divergences8, and it does not provide a proper
treatment of quasi-degenerate levels.

Another approach to developing a perturbation theory for high-Z few-electron
systems is to use Green’s functions, which solves these issues far more elegantly. We
remark that many variants of Green’s function formalism have been created up to this
point, with the techniques of extracting physical information from Green’s functions,
namely the energy levels and transition and scattering amplitudes, differing from
one another. In the present thesis, we will work within the two-time Green’s-function
method (TTGF). This technique was developed by Shabaev Shabaev, 2002, and due
to its ease of use in actual computations, the TTGF formalism has gained popularity
in studies involving the energy shift of high-Z few-electron systems [see, for example,

7We refer to "reducible diagrams" as diagrams in which an atom’s intermediate-state energy
coincides with the reference-state energy.

8Because the adiabatically damped component, exp(-"|t|), is non-covariant, the ultraviolet diver-
gences in Ŝ",� can not be eliminated if " 6= 0.
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G

tt0

Figure 3.1: The N-particle two-time Green’s function G is the ampli-
tude for going from one state of N particles to another state.
Here N = 3 and G ⌘ G

�
t
0, x

0
1, x

0
2, x

0
3; t, x1, x2, x3

�
.

Refs. (Yerokhin et al., 1998; Yerokhin et al., 2021; Sikora et al., 2020; Cakir et al.,
2020; Glazov et al., 2019a; Glazov et al., 2006; Volotka et al., 2014; Oreshkina et
al., 2008)]. The method is based on using contour integral formalism to generate
perturbation theories for the energy shift of some bound state, which was first
developed in operator theory by Szökefalvi-Nagy and Kato (Kato, 1949; Kato, 1950a;
Sz-Nagy, 1946; Kato, 1950b). Logunov and Tavkhelidze (Logunov and Tavkhelidze,
1962) were the first to use two-time Green’s functions in quantum field theory to
formulate a quasipotential method. TTGF method, contrary to the Gell-Mann-Low-
Sucher formalism, includes a straightforward procedure for calculating the energy
of degenerate and quasi-degenerate states. The following sections summarize the
method’s main ideas in the case of a single level. For a more complete description
see Ref. (Shabaev, 2002).

As shown in Fig. 3.1, the two-time Green’s function represents the probability
amplitude for N fermions to move from one position to the other. A typical N-particle
correlation function between two times t and t

0 is the corresponding mathematical
object

G ⌘ G
�
t
0, x

0
1
, . . . , x

0
N

; t, x1, . . . , xN

�
= h0|T

⇥
 ̂
�
t0, x

0
1

�
· · ·  ̂

�
t0, x

0
N

�

⇥ b
 (t, xN) · · · b (t, x1)

i
|0i.

(3.46)

We note that the two-time Green function G, like the usual Green function G
0 ⌘

G
�
(x0

1
, t0

1
), · · · , (x0

N
, t0

N
); (x1, t1), · · · , (xN, tN)

�
that depends on 2(N- 1) relative times,

contains all of the information about the atomic system’s energy levels (Shabaev,
2002). However, G is easier to extract information about energy levels from, so
Shabaev (Shabaev, 2002) suggested working with TTGF rather than G

0.
To demonstrate that it is possible to extract energies from TTGF, G, we should
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make the following steps. Firstly, let us introduce the Fourier transform of the TTGF
G in time

G (E; x
0
1
, . . . , x

0
N

; x1, . . . , xN

�
�
�
E- E

0�

=
1

2⇡i
1

N!

Z1

-1
dt dt0 exp

�
iE0

t
0 - iEt

�

⇥
D
0

���T
h
 ̂
�
t0, x

0
1

�
· · ·  ̂

�
t0, x

0
N

� b
 (t, xN) · · · b (t, x1)

i��� 0
E

.

(3.47)

The spectral representation of G reads as (Shabaev, 2002)

G (E; x
0
1
, . . . , x

0
N

; x1, . . . , xN

�

=
X

n

⇧n

�
x0
1
, . . . , x0

N

�
⇧n (x1, . . . , xN)

E- En + i�
+ (-1)N

X

n

⌅n

�
x0
1
, . . . , x0

N

�
⌅n (x1, . . . , xN)

E+ En - i�
,

(3.48)

with

⇧n (x1, . . . , xN) =
1p
N!

⌦
0
�� ̂ (0, x1) . . .  ̂ (0, xN)

��⌦n

↵
,

⌅n (x1, . . . , xN) =
1p
N!

⌦
⌦n

�� ̂ (0, x1) . . .  ̂ (0, xN)
�� 0
↵

.
(3.49)

Here |⌦ni denotes the states with the exact energy eigenvalues En,

ĤQED |⌦ni = En |⌦ni , (3.50)

where ĤQED is a full QED Hamiltonian given by Eq. (3.4). The summation in Eq.
(3.48) encompasses all bound and continuum states of the system of the interacting
fields. It was assumed for the vacuum energy E0 = 0 without loss of generality. One
can rewrite Eq. (3.48) in terms of functions A1 and B1 as

G (E; x
0
1
, . . . , x

0
N

; x1, . . . , xN

�

=

Z1

E
(+)
min

dE0A1

�
E
0; x

0
1
, . . . , x

0
N

; x1, . . . , xN

�

E- E0

- (-1)N
Z1

E
(-)
min

dE0B1

�
E
0; x

0
1
, . . . , x

0
N

; x1, . . . , xN

�

E+ E0 ,

(3.51)



30 bound-state qed in external field approximation

where

A1 ⌘A1

�
E; x

0
1
, . . . , x

0
N

; x1, . . . , xN

�
=
X

n

� (E- En)⇧n

�
x
0
1
, . . . , x

0
N

�
⇧n (x1, . . . , xN) ,

B1 ⌘B1

�
E; x

0
1
, . . . , x

0
N

; x1, . . . , xN

�
=
X

n

� (E- En)⌅n
�
x
0
1
, . . . , x

0
N

�
⌅n (x1, . . . , xN) .

(3.52)

In Eq. (3.51) E(+)
minis the minimal energy of states with electric charge eN and E

(-)
min is

the minimal energy of states with electric charge -eN. Function G (E) (we omitted
x
0
1
, . . . , x

0
N

; x1, . . . , xN) is an analytical continuation of the Green’s function to the
complex E-plane with the cuts

⇣
-1,E(-)

min

i
and

h
E
(+)
min,1

⌘
. The system’s bound states

are of interest to us. The energies of the states with charge eN, which are physically
the atomic eigenstates of an ion with N orbiting electrons, are the poles of G (E) on
a positive real part, according to Eq. (3.51). We note, that in the total charge of the
system, the charge of the nucleus is not included. For the case of noninteracting fields,
d
 (0) and

d
A

(0)
µ , the poles corresponding to bound states are isolated. The isolated

poles become branch points when the interaction between the fields is turned on
since the photon has a zero mass. To develop the perturbation theory for energy
level computations, we must separate these poles from the corresponding cuts. To
accomplish so, we introduce the nonzero photon mass µ in such a manner that it is
bigger than the level’s energy shift (or energy splitting) and considerably smaller
than the distance between levels. After performing the calculations we must put
µ ! 0. We should also mention that we ignore the instability of excited states and
thus assume that the corresponding poles lie on the real axis.

Energy of a single level of N-electron atom

Now let us derive the formulas for the energy �Ea of a single isolated level a of an
N-electron atom. The unperturbed energy level E(0)

a neglecting the perturbation is
given by

E
(0)
a = "a1 + · · ·+ "aN , (3.53)

where "aN is the one-electron Dirac energy,

hD�aN(x) =
h
-i↵ ·r+ V

nucl(x) +�
i
�aN(x) = "aN�aN(x). (3.54)
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Here hD is a Dirac Hamiltonian, see Eq. (2.10). The corresponding unperturbed
N-electron wave function ua (x1, . . . , xN) is a one-determinant function

ua (x1, . . . , xN) =
1p
N!

X

P

(-1)P�Pa1
(x1) · · ·�PaN

(xN) , (3.55)

where P is the permutation operator giving rise to the sign (-1)P according to the
parity of the permutation.
Let us introduce the function gaa(E)

gaa(E) =
D
ua

���G (E)�0
1
· · ·�0

N

���ua
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⌘
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dx1 · · ·dxNdx
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0
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1
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N
ua (x1, . . . , xN) .

(3.56)

Using spectral representation for G (E) (3.51), where from the sum we consider only
one bound state a, i. e. n = a and E

0 = Ea > 0, one can show that

gaa(E) =
Aa

E- Ea

+ terms that are regular at E ⇠ Ea, (3.57)

where according to Eqs. (3.49), (3.52)
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(3.58)

We remind that when a non-zero photon mass µ is introduced, the pole corresponding
to the bound state a is isolated. As a result, the contour integral method is useful for
generating the perturbation series for Ea. Let us choose a contour � in the complex
E-plane that surrounds the pole corresponding to the level a while remaining outside
of all other singularities. Then, according to the residue theorem

1

2⇡i

I

�

dEEgaa(E) = EaAa, (3.59)

and

1

2⇡i

I

�

dEgaa(E) = Aa, (3.60)
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where the contour � is oriented anticlockwise. From Eqs. (3.59) and (3.60), one can
get the following formula for energy Ea

Ea =
1

2⇡i

H
�
dEEgaa(E)

1

2⇡i

H
�
dEgaa(E)

. (3.61)

For our purposes, it is more convenient to transform Eq.(3.61) in a way that directly
yields the energy shift �Ea = Ea - E

(0)
a ,

�Ea =

1

2⇡i
H
�

dE
⇣

E - E(0)
a

⌘
�gaa(E)

1+ 1

2⇡i
H
�

dE�gaa(E)
, (3.62)

where �gaa = gaa - g
(0)
aa and g

(0)
aa = 1

E-E
(0)
a

.
One can build the function �gaa(E) by perturbation theory

�gaa(E) = �g
(1)
aa(E) +�g

(2)
aa(E) + · · · , (3.63)

where the superscript denotes the order in ↵. Accordingly, one can construct pertur-
bation series in ↵ for the energy shift �Ea

�Ea = �E
(1)
a +�E

(2)
a + · · · , (3.64)

where

�E
(1)
a =
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2⇡i

I

�

dE�E�g
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aa(E), (3.65)
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(3.66)
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(3.67)
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with �E ⌘ E- E
(0)
a . We should note that the terms in the second line of Eq. (3.66)

and the last three lines of Eq. (3.67) are referred to as disconnected contributions,
and they are usually merged with the corresponding irreducible diagrams.

Perturbation series for two-time Green’s function

Let us discuss the procedure of calculating the perturbation series of function gaa

(3.63). If one finds the perturbation expansion for the Fourier transform of the TTGF,
G , or the TTGF, G, itself, one finds the perturbation series of function gaa, according
to definition (3.56).

Let us return to the definition of TTGF (3.46). When Eq. (3.46) is compared to Eq.
(3.42), it is clear that the two-time Green’s function is nothing more than an exact
electron propagator for N = 1. Therefore, similarly to Eq. (3.44), exact TTGF can be
represented in terms of corresponding fields in interaction representation
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IR
int(z)

i��� 0
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(3.68)

Here Ĥ
IR
int(z) is Hamiltonian density describing the interaction

Ĥ
IR
int (z) = -L̂

IR
int (z) = e : ˆ̄

 
IR(z)�µ ̂

IR(z)ÂIR
µ (z) :, (3.69)

with : : being normal product. The perturbation expansion for TTGF (with fine
structure constant ↵ being an expansion parameter) is obtained by replacing the
exponents in Eq. (3.68) with the Taylor series
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(3.70)

As a result, the perturbation series for the function gaa (3.63) and thus the energies
Ea (3.64) are defined.

The function on the right side of the Eq. (3.68) can be constructed using Wick’s the-
orem (Wick, 1950). It allows rewriting the time-ordered product of several operators
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ABCD . . . into a sum of normal-ordered products with all conceivable contractions

AB between two operators,

T[ABCD . . .] = : ABCD . . . : + : ABCD . . . : + : ABCD . . . : + : ABCD . . . :

+ : ABCD. . . : + · · ·+ : ABCD . . . : + : ABCD . . . : + : ABCD. . . :

+ : ABCD . . . : + · · · all possible contractions ,
(3.71)

where the contraction between two neighboring operators is just a C-number defined
as

AB ⌘ T [AB]- : AB : . (3.72)

The following propagators result from contractions between the electron-positron
fields  ̂IR(x) and between the photon fields Â

IR
µ (x)

 ̂
IR
(x) ̂IR(y) =

D
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��� T
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(3.73)

and

Â
IR
µ (x)ÂIR

⌫ (y) =
D
0

��� T
h
Â

IR
µ (x)ÂIR

⌫ (y)
i��� 0
E

=
i

2⇡

Z
d!e

-i!(tx-ty)Dµ⌫(!, x - y).
(3.74)

The temporal Fourier-transformed photon propagation function Dµ⌫(!, x - y) is
given by Eq. (2.19) in Feynman gauge and by Eq. (2.20) in Coulomb gauge. In Eq.
(3.73), the sum runs over all bound and continuum electron states.

Extended Furry picture

We have previously formulated the QED perturbation theory within the framework
of the extended Furry picture, in which the interaction of bound electrons with the
nucleus is accounted for up to all orders in ↵Z and the interaction with the quantized
electromagnetic field Âµ(x) is accounted for perturbatively. As can be seen from
the previous section, the construction of perturbation expansion is very convenient
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within the interaction picture, so we will continue working within it unless otherwise
specified. In what follows the total QED Hamiltonian ĤIR

QED reads as

ĤIR
QED = Ĥ0,F + ĤIR

int, (3.75)

here we used the fact that Ĥ0,F = ĤIR
0,F. In Eq. (3.75) the unperturbed normal-ordered

Hamiltonian Ĥ0,F is given by Beier et al., 2000

Ĥ0,F =

Z
dx : [ (0)†(x)hD(x)

d
 (0)(x) : =

"n>0X

n

"na
†
nan -

"n<0X

n

"nb
†
nbn, (3.76)

and the interaction Hamiltonian ĤIR
int reads as

ĤIR
int =

Z
dxĤ

IR
int (x) =

Z
dx :

⇣
 ̂

IR(x)
⌘†

hint (x) ̂
IR(x) : . (3.77)

The interaction term hint (x) according to Eq. (3.69) is given by

hint (x) = e↵
µ
Â

IR
µ (x), (3.78)

here we used the identity ↵µ = �
0
�
µ.

However, in the case of few-electron ions, it is possible to accelerate the perturbation
theory by accounting for the part interelectronic interaction already in the zeroth
order. To do so, one needs to add local screening potential Vscr(x), which models
the screening of the nuclear potential by bound electrons, to the unperturbed Dirac
Hamiltonian

hD ! hD,eF = -i↵ ·r+ V
eff(x) +�, (3.79)

where

V
eff(x) = V

nucl(x) + V
scr(x). (3.80)

It is called extended Furry picture (eF). Within the framework of this formalism, the
unperturbed normal-ordered Hamiltonian Ĥ0,eF is given now by

Ĥ0,F ! Ĥ0,eF =

Z
dx :

[
 

(0)†
eF (x)hD,eF(x)

d
 

(0)
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=

"n,eF>0X

n

"n,eF a
†
nan -

"n,eF<0X

n

"n,eF b
†
nbn,

(3.81)
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where the electron-positron field operator
d
 

(0)
eF is given by the Eq. (2.9) but one need

to replace �n and "n by the eigenfunctions and eigenvalues of the operator hD,eF.
We note that the total QED Hamiltonian ĤIR

QED (3.75) should not change since we
do not change the system, only rearrange the terms. Theorefore, since we add the
term V

scr(x) to the ĤIR
QED we need to subtract it from ĤIR

QED as well. We refer to this
term as a counterpotential and include it to the interaction term hint, eF

hint (x) ! hint,eF (x) = e↵
µ
Â

IR
µ (x)- V

scr(x), (3.82)

with the corresponding normal-ordered interaction Hamiltonian ĤIR
int,eF

ĤIR
int ! ĤIR

int,eF =

Z
dx :

⇣
 ̂

IR
eF(x)

⌘†
hint,eF(x) ̂

IR
eF(x) : . (3.83)

Here as in a case of the usual Furry picture, the spectral representations of  ̂IR
eF and

d
 

(0)
eF coincide.
In the present thesis, we perform calculations within the extended Furry picture,

which has been already successfully applied to the QED calculations of various
atomic properties (Sapirstein and Cheng, 2001; Oreshkina et al., 2007; Sapirstein and
Cheng, 2006; Oreshkina et al., 2008; Glazov et al., 2019b; Sapirstein and Cheng, 2008;
Sapirstein and Cheng, 2003; Ginges et al., 2017; Glazov et al., 2006; Kozhedub et al.,
2007; Malyshev et al., 2014; Kozhedub et al., 2019). We note that the framework of
extended Furry picture allows not only to accelerate the perturbation theory but also
to relieve the quasidegeneracy of the 1s

2
2s and 1s

2
2p1/2 states already at the zeroth-

order level and improve the energy level scheme of the first excited states. In the
present thesis, we employ 5 starting potentials: Coulomb, core-Hartree (CH), Kohn-
Sham (KS), Dirac-Hartree (DH), and Dirac-Slater (DS). We restrict our consideration
to the Li-like ions in a ground state, i. e. configuration (1s)22s. Therefore screening
spherically symmetric potential V

scr partly takes into account the interelectronic
interaction between the valence 2s electron and the core electrons of the (1s)2 shell.
The simplest choice of Vscr(x) among mentioned above potentials is the core-Hartree
(CH) potential

V
scr(x) = ↵

Z1

0

dx0
⇢c (x0)

x>
,

⇢c(x) = 2

h
G

2

1s
(x) + F

2

1s
(x)
i

,
Z1

0

⇢c(x)dx = 2,
(3.84)

where ⇢c is the radial charge density of the two core 1s electrons, x> = max (x, x0)
with x = |x|, and G/x and F/x are large and small radial components of the Dirac
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wave function (Malyshev et al., 2017a). The rest of screening potentials are derived
from the density-functional theory (Indelicato and Desclaux, 1990; Sapirstein and
Cheng, 2002)
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dx0
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�
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81
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h
G

2
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(x) + F

2
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(x)
i

,
Z1

0

⇢t(x)dx = 3.
(3.85)

Here ⇢t is the total radial charge density of all electrons in (1s)22s configuration. The
parameter x↵ = 0, 2/3, 1 are referred to as the Dirac-Hartree (DH), the Kohn-Sham
(KS) and the Dirac-Slater (DS) potentials, respectively. We note, that potentials from
Eq. (3.85) have wrong asymptotic behavior, therefore we replace (Latter, 1955) them
by V

eff(x) = 2↵

x at large x. Iterations are used to create self-consistent potentials,
which continue until the energies of the core and valence states stabilize at 10

-9.
The core-Hartree potential is not self-consistent, therefore, it is created after just one
iteration.





4
H Y P E R F I N E S T R U C T U R E I N L I T H I U M L I K E I O N S

In this chapter, we investigate the interelectronic corrections to the ground-state
hyperfine splitting in lithiumlike ions in the framework of the bound-state QED
theory. Firstly, in Sec. 4.1, we give the basic formulas for the hfs in the lowest-order
approximation. Then in Secs. 4.2.2 and 4.2.3, we consider the corrections to the
hfs due to one- and two-photon exchanges. The description of the higher-order
interelectronic-interaction corrections is given in Sec. 4.2.4. We conclude this chapter
with the numerical results for the mentioned above corrections as well as the compar-
ison of the QED treatment of the interelectronic interaction with methods based on
the Breit approximation, see Sec. 4.3.

This chapter is based on the following reference:

Many-electron effects in the hyperfine splitting of lithiumlike ions
V. P. Kosheleva, A. V. Volotka, D. A. Glazov, and S. Fritzsche
Phys. Rev. Research 2, 013364 (2020).

4.1 the hyperfine splitting in the lowest-order approximation

The interaction of bound electrons with the magnetic field of the nucleus causes the
hyperfine splitting of atomic energy levels. The Fermi-Breit operator Hµ characterizes
this interaction in the dipole approximation

Hµ =
|e|

4⇡
µ · T, (4.1)

39
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where µ denotes the nuclear magnetic moment operator acting in nuclear state space.
Operator T represents the electronic part of Hµ, implying that operator T acts in the
space of bound electrons

T =
X

i

[ni ⇥↵i]

x2
i

F (xi) . (4.2)

Here index i denotes the atom’s ith electron, ni = xi/xi, and F (ri) denotes the nuclear
magnetization volume distribution function, which is discussed further below. The
total angular momentum of atomic electrons J and nuclear spin I are not conserved
independently as a result of this interaction, and only the total atomic angular
momentum F = J + I is an integral of motion. As a result, the energy levels, which
are defined by the quantum number J, split into sublevels that correspond to all
conceivable total angular momentum F values

F = J+ I, J+ I- 1, . . . , |J- I|. (4.3)

Hyperfine splitting is the name for this type of splitting. We focus on Li-like ions with
the valence electron in state |ai = |jamai, total angular momentum ja = 1/2, and its
projection ma. The valence electron |ai determines the angular quantum numbers of
the electronic system in this case: J = ja and MJ = ma, where MJ is the projection of J.
The energy levels of lithiumlike ion are then split into two components, F+ = I+ 1/2

and F
- = I- 1/2, according to Eq. (4.3), and the ground-state hfs value in Li-like

ions may be represented as follows

�Ehfs = E
�
F
+
�
- E

�
F
-
�

. (4.4)

Here the energy level of the lithiumlike ion with total angular momentum F is denoted
by E(F). Ground-state hfs may be determined analytically in the nonrelativistic one-
electron point-nucleus approximation (so-called Fermi energy EF)

�Ehfs �!
nonrel

EF =
↵(↵Z)3

n3
a

gI

mp

2I+ 1

(ja + 1) (2la + 1)

1
�
1+ me

M

�3 . (4.5)

Here la = ja ± 1/2 is the parity of the state |ai, na defines a valence electron’s
principal quantum number, gI = µ

µNI
is the nuclear g factor, µ is the nuclear magnetic

moment, µN = |e|

2mp
is the nuclear magneton, and mp and M are the proton and

nuclear masses, respectively.
The ground-state hfs in Li-like ions may be parametrized using Eq. (4.5)

�Ehfs = EFXa(1- ✏), (4.6)
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where ✏ is a Bohr-Weisskopf correction originating from the extended nuclear magne-
tization distribution, Xa is a dimensionless hfs factor encompassing the many-electron
and QED effects.

The volume distribution function F(x) takes the Bohr-Weisskopf correction ✏ into
account (see Eq. (4.2)). In the case of point-like nuclear magnetic moment approxima-
tion, for example, F(x) = 1. In this thesis, we employ the homogeneous sphere model
to account for the spatial nuclear magnetization distribution, which reads as follows

F(x) =

8
<

:

⇣
x
R0

⌘3
, x 6 R0

1, x > R0

, (4.7)

where R0 =
q

5

3
hr2i is the magnetization sphere radius,

⌦
r
2
↵

corresponds to the
magnetic root-mean-square (rms) radius. We assume that magnetic rms equals
nuclear charge rms radius. The sphere model, on the other hand, does not always
effectively reflect the distribution of nuclear magnetization. For evaluating the Bohr-
Weisskopf correction, the nuclear single-particle model approximation is commonly
utilized (Shabaev, 1994; Shabaev et al., 1995; Shabaev et al., 1997a; Shabaev et al.,
1997b; Shabaev et al., 1998; Zherebtsov and Shabaev, 2000; Tupitsyn et al., 2002). The
total angular momentum of the unpaired nucleon (proton or neutron) is used to
define nuclear magnetization in this model. The unpaired nucleon in nuclei with
odd or even nuclear charge numbers is a proton or a neutron, respectively. Thus, for
example, in Refs. (Shabaev et al., 1997b; Zherebtsov and Shabaev, 2000; Tupitsyn
et al., 2002), the radially symmetric distribution function F(x) was derived within
the framework of the nuclear single-particle model. It was shown that the ratio of
the Bohr-Weisskopf corrections calculated with different magnetization distribution
models remains constant to a high degree of accuracy for Li-like ions (Shabaev et al.,
2001) and even neutral atoms (Ginges and Volotka, 2018), as obtained for H-like
ions. With this in mind, one can utilize the results for H-like ions obtained with the
odd nucleon model, for example, to evaluate the Bohr-Weisskopf correction for the
corresponding Li-like ion, i.e., ✏Li

odd = ✏
H
odd

⇣
✏

Li
sph/✏

H
sph

⌘
.

In the one-electron approximation, the dimensionless hfs parameter Xa is given by

Xa = Ga ha |Tz|ai , (4.8)

with

Ga =
n
3
a (2la + 1) ja (ja + 1)

2(↵Z)3ma

. (4.9)
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Here, Tz is z component of the T operator given by Eq. (4.2). In the nonrelativistic
one-electron point-nucleus approximation, G-1

a is the nonrelativistic value of the
electron component of the Fermi energy, such that Xa �! 1.

4.2 electron correlation effects

Let us now investigate the many-electron effects to the hfs in the framework of the
QED perturbation theory. When considering the magnetic interaction, the interaction
Hamiltonian must now include the following term

ĤIR
magn =

Z
dx :

⇣
 ̂

IR(x)
⌘†
�V(x) ̂IR(x) : . (4.10)

Here �V(x) denotes the external magnetic perturbing potential. Then the total
interaction Hamiltonian ĤIR

int reads as

ĤIR
int =

Z
dx :

⇣
 ̂

IR(x)
⌘†

hint(x) ̂
IR(x) : +

Z
d
3
x 

†(x)�V(x) (x), (4.11)

in usual Furry picture and

ĤIR
int =

Z
dx :

⇣
 ̂

IR
eF(x)

⌘†
hint,eF(x) ̂

IR
eF(x) : +

Z
d
3
x 

†(x)�V(x) (x), (4.12)

in the extended Furry picture. In this chapter we use interaction Hamiltonian defined
by either Eq. (4.11) or Eq. (4.12) with �V(x) being a Fermi-Breit operator

�V(x) = Hµ. (4.13)

In such a case, the interaction Hamiltonian (4.11) or (4.12) operates in the electron
and nuclear states’ Fock spaces, but the nuclear states are limited to the ground-state
subspace |IMIi only with MI = -I, . . . , I. To separate the contributions to the hfs, we
limit ourselves to effects that are linear in Hµ. In other words, we only consider the
Feynman diagrams of the first order in the hyperfine interaction. The hfs parameter
Xa according to Eqs. (4.4) and (4.6) given by

Xa =
E (F+)- E (F-)

EF
, (4.14)
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where E(F) is the energy of a single isolated level of the Li-like ion and F is its total
angular momentum. E(F) can be found using the two-time Green’s function method
described in the previous Sec. 3.4.2, see Eq. (3.61)

E(F) =

H
�
d""GF(")H
�
d"GF(")

. (4.15)

The contour � only surrounds the pole " = E
(0), where E

(0) is the unperturbed energy,
which is, contrary to Sub. 3.4.2, the sum of the one-electron Dirac and nuclear
energies, GF(") =

⌦
FMFIja|G (E)�0

1
�
0

2
�
0

3
|FMFIja

↵
, and |FMFIjai is the wave function

of the coupled system (nucleus + electrons)

|FMFIjai =
X

MIma

C
FMF
IMIjama

|IMIi |jamai . (4.16)

Here |IMIi denotes the nuclear wave function with nuclear spin I and its projec-
tion MI, whereas |jamai denotes the unperturbed 3-electron one-determinant wave
function in the 1s

2
2s state with total angular momentum ja and its projection ma.

The energy E(F) and the function GF(") are to be expanded in the power series in ↵
according to the perturbation theory

E(F) = E
(0) + E

(1)(F) + · · ·+ E
(i)(F) + . . . ,

GF(") = G
(0)(") +G

(1)
F

(") +G
(2)
F

(") + · · ·+G
(i)
F
(") + . . . .

(4.17)

It should be noted that there is no interaction of bound electrons with the magnetic
field of the nucleus in the zeroth order in ↵, and thus the zeroth-order energy E

(0)

does not depend on the total angular momentum F. In this vein, the hfs parameter
Xa can be expanded as follows

Xa = X
(0)
a +X

(1)
a +X

(2)
a +X

(3+)
a ,

X
(3+)
a = X

(3)
a + · · ·+X

(i)
a + . . . ,

(4.18)

where i denotes the ith order correction X
(i)
a in ↵, which is written as

X
(i)
a =

E
(i+1) (F+)- E

(i+1) (F-)

EF
. (4.19)

All relevant corrections, such as the one-electron QED, screened QED, and interelectronic-
interaction terms to the hfs, are included in each order in ↵. However, in this thesis,
we only consider the interelectronic-interaction corrections. Then the terms in Eq.
(4.18) pertain to the interelectronic-interaction corrections due to one-photon ex-
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change
⇣
X
(1)
a

⌘
, two-photon exchange

⇣
X
(2)
a

⌘
, and three- and more-photon exchange

⇣
X
(3+)
a

⌘
, respectively. In contrast to previous works (see, for example, (Volotka et al.,

2008; Shabaev et al., 1998)), we explicitly separate out the two-photon-exchange term
X
(2)
a , as it is now obtained within the rigorous QED framework. Then the first-order

term X
(1)
a corresponds to B(↵Z)/Z in Refs. (Volotka et al., 2008; Shabaev et al., 1998),

whereas the sum X
(2+)
a = X

(2)
a +X

(3+)
a corresponds to C(↵Z,Z)/Z2 in Refs. (Volotka

et al., 2008; Shabaev et al., 1998).

4.2.1 Zeroth-order contribution

The lowest order term X
(0)
a according to the Eq. (4.19) reads as

X
(0)
a =

E
(1) (F+)- E

(1) (F-)

EF
, (4.20)

where

E
(1)(F) =

1

2⇡i

I

�

d"

⇣
"- E

(0)
⌘
G

(1)
F

("), (4.21)

and the Feynman rules are used to calculate G
(1)
F

(")

G
(1)
F

(") =
hFMFIja |Hµ| FMFIjai�

"- E(0)
�2 . (4.22)

Using Eqs. (4.21) and (4.22), we get

E
(1)(F) = hFMFIja |Hµ| FMFIjai . (4.23)

When Eqs. (4.1), (4.16), and (4.23) are substituted into Eq. (4.20), an explicit form for
X
(0)
a can be found

X
(0)
a = Ga ha |Tz|ai , (4.24)

which is the same as Eq. (4.8), where this term was obtained in the one-electron
approximation.

As was mentioned before in Subsection 3.4.2, we perform calculations within the
extended Furry picture. In the present chapter, we employ three starting potentials:
Coulomb, core-Hartree, and Kohn-Sham. It’s worth noting that the original Furry
picture was used in previous computations, therefore only the total value of Xa may
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Figure 4.1: Feynman diagrams representing the one-photon exchange correction to the hfs
within the framework of the extended Furry picture. The photon propagator is
indicated by the wavy line. The electron propagator in the effective potential Veff

is shown by the triple line. The magnetic interaction �V = Hµ is represented by
the dashed line that ends with a triangle. The extra interaction term associated
with the screening potential counterterm -V

scr is represented by the symbol ⌦.

be compared to the corresponding results from Refs. (Volotka et al., 2008; Shabaev
et al., 1998). Here, we should note that in previous calculations (Volotka et al., 2008;
Shabaev et al., 1998) the original Furry picture was used, and therefore, only the total
value of Xa can be compared with corresponding value from Refs. (Volotka et al.,
2008; Shabaev et al., 1998).

4.2.2 First-order contribution

The next order correction X
(1)
a to the hfs is given by

X
(1)
a =

E
(2) (F+)- E

(2) (F-)

EF
, (4.25)

where

E
(2)(F) =

1

2⇡i

I

�

d"

⇣
"- E

(0)
⌘
G

(2)
F

(")-
1

2⇡i

I

�

d"

⇣
"- E

(0)
⌘
G

(1)
F

(")
1

2⇡i

I

�

d"G
(1)
F

(").

(4.26)

Fig. 4.1 depicts the one-photon exchange diagrams of the nucleus corresponding to
G

(2)
F

(") in the presence of a magnetic field. The counterterm diagrams representing
an additional interaction appear in the extended Furry picture, see Sec. 3.4.2. These
diagrams are also depicted in Fig. 4.1, where the symbol ⌦ stands for local screening
potential counterterm -V

scr. Using the Feynman rules for the functions G
(2)
F

(") and
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G
(1)
F

("), and keeping only the linear dependence on Hµ, the one-photon exchange
correction to the hfs in Li-like ion X

(1)
a is obtained in the form

X
(1)
a = 2Ga

X

b

"
X

P

(-1)P
�⌦
⇣b|PaPb |Tz|a

↵
+
⌦
⇣a|PbPa |Tz|b

↵�
- (4.27)

-
1

2
(ha |Tz|ai- hb |Tz|bi)

⌦
ab
��I0 ("a - "b)

��ba
↵�

- 2Ga h⌘a |Tz|ai ,

with

|⌘ai =
X

n

0 |ni hn |V
scr
|ai

"a - "n
,

��⇣a|PbPa
↵
=

X

n

|nihna|I(�)|PbPai
"b - "n

,
��⇣b|PaPb

↵
=

X

n

|nihnb|I(�)|PaPbi
"a - "n

.
(4.28)

Here, � = "a - "Pa, "n denotes one-electron energies, |bi denotes the 1s state, and the
sum over b takes into account two possible projections mb = ±1/2 of total angular
momentum jb. The prime on the sums over the intermediate states n indicates that
the terms with vanishing denominators are omitted. The interelectronic-interaction
operator I(!) is given by Eq. (2.21). We would like to point out that a rigorous
evaluation of the one-photon exchange correction to the ground-state hfs in Li-like
ions was previously performed in Refs. (Volotka et al., 2008; Shabaev et al., 1998;
Oreshkina et al., 2007) in the framework of the original Furry picture and Ref.
(Sapirstein and Cheng, 2001) in the framework of the extended Furry picture.

4.2.3 Second-order contribution

The second-order correction X
(2)
a to the hfs reads as follows

X
(2)
a =

E
(3) (F+)- E

(3) (F-)

EF
, (4.29)
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where

E
(3)(F) =

1

2⇡i

I
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(4.30)

Figs. 4.2, 4.3, and 4.4 show diagrams of two-photon exchange in the presence of a
magnetic field of the nucleus that correspond to the function G

(3)
F

(").
The X

(2)
a can be formally written as

X
(2)
a = X

(2)
3el +X

(2)
2el +X

(2)
red +X

(2)
ct , (4.31)

where X
(2)
3e1

is three-electron, X(2)
2el is two-electron, X(2)

ct is counterterm, and X
(2)
red is

reducible contributions, respectively. The first term in Eq. (4.31) is written as follows

X
(2)
3el = X

(2)
3el,A +X

(2)
3el,B +X

(2)
3el,C +X

(2)
3el,D, (4.32)

where each contribution is represented by the Feynman diagrams shown in Fig. 4.2.
Three-electron diagrams correspond to a relatively simple subset of diagrams; its
structure is very similar to X

(1)
a , but unlike X

(1)
a , we now deal with much large number

of contributions.
The two-electron contribution X

(2)
2el

, like the previous term X
(2)
3el, can be presented

using the many-electron diagrams shown in Fig. 4.3. Therefore, X(2)
2el can be written

as follows

X
(2)
2el = X

(2)
2el,lad-W +X

(2)
2el,cr-W +X

(2)
2el,lad-S +X

(2)
2el,cr-S. (4.33)

As can be seen, X(2)
2el is comprised of a ladder ("lad") and a cross ("cr") part, with

the additional labels "-S" and "-W" denoting cases where the magnetic interaction is
inserted in the internal electron line or the external electron line, respectively. The
two-electron term X

(2)
2el involves integrating over the energy of the virtual photon !,

which is infrared-divergent in some terms. However, these infrared-divergent terms
may be separated, and the divergences cancel each other out. We perform a Wick
rotation with the integration contours chosen in Ref. (Mohr and Sapirstein, 2000) to
avoid strong oscillations for large real values of !.

The third term, X(2)
red, in Eq. (4.31) is a reducible term, which corresponds to contri-
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(A) (B) (C) (D)

Figure 4.2: Feynman diagrams illustrating the three-electron contribution to the two-photon-
exchange correction X

(2)
3el to the hfs. The notations are identical to those shown in

Fig. 4.1.

(lad-W) (lad-S) (cr-W) (cr-S)

Figure 4.3: Feynman diagrams illustrating the two-electron part of the two-photon-exchange
correction X

(2)
2el to the hfs. The notations are identical to those shown in Fig. 4.1.

butions with the system’s intermediate energy equal to its initial energy as well as
disconnected ones (lines 2 and 3 in Eq. (4.30)). Finally, the last term in Eq. (4.31) is
a counterterm contribution X

(2)
ct , which appear only in the extended Furry picture

formalism (see Fig. 4.4). Appendix 7 contains the formal expressions for all of the
terms in Eqs. (4.31)–(4.33).

Furthermore, the formal expressions of the two-photon exchange correction X
(2)
a

involve infinite summations over the entire Dirac spectrum, including the infinite par-
tial wave expansion. The dual-kinetic balance finite basis set method (Shabaev et al.,
2004) for the Dirac equation is used to perform the summation over the intermediate
states. We construct the basis functions from B-splines (Sapirstein and Johnson, 1996).
To establish a clear convergence pattern of the calculated findings, we continuously
increased the number of basis functions from N = 92 to N = 212, and then did the
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Figure 4.4: Feynman diagrams illustrating the counterterm part of the two-photon-exchange
correction X

(2)
countrterms to the hfs, which appear in the framework of the extended

Furry picture only. The notations are identical to those shown in Fig. 4.1.

extrapolation N ! 1. The partial wave summation over the Dirac quantum number
 was stopped at max = 10, and the remainder was estimated using least-squares
inverse polynomial fitting. The absolute uncertainty of this estimation in X

(2)
a is found

to be around 3⇥ 10
-7 in the case of Z = 7 and rapidly decreases to 10

-7 or less as Z

increases.
The two-photon exchange correction is calculated within the Feynman and Coulomb

gauges as a consistency check, and the results are found to be gauge invariant to a
very high degree of precision. As an additional consistency check, we compare the
obtained results for the X

(2)
a to the results evaluated within the Breit approximation

(see the next section). The comparison includes both a numerical and an analytical
check, which was performed by replacing the interelectronic-interaction operator
I(!) in the Breit approximation with its frequency-independent counterpart. All of
this validates the accuracy of the current calculations.
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4.2.4 Third- and higher-order contributions 1

While the rigorous QED approach is currently limited to the first and second orders of
the interelectronic interaction, the third- and higher-order contributions

⇣
X
(3+)
a

⌘
are

also significant at the current level of theoretical accuracy. As a result, these contribu-
tions are currently taken into account within the so-called Breit approximation, which
is based on the Dirac-Coulomb Breit equation. The interelectronic-interaction opera-
tor I(!) is substituted by its ! = 0-limit in the Coulomb gauge in this approximation

I (!, x12) ! IB (x12) = ↵

✓
1

x12
-

↵1↵2

x12
+

1

2

h
h

D
1

,
h
h

D
2

, x12
ii◆

. (4.34)

The projector on the space positive-energy states of the one-electron Dirac Hamilto-
nian is another important part of the Dirac-Coulomb-Breit method. Faustov, 1970
and Sucher, 1980 demonstrated the origin of this method. Because the use of this
projector effectively suppresses processes involving virtual electron-positron pairs,
it is also known as the "no-pair approximation" (Breit no-ee+). However, mixing the
large and small components of the Dirac wave functions by the Fermi-Breit operator
(4.1) (or any other operator with ↵ matrices) results in a significant increase in the
negative-energy contributions. To account for these contributions, one needs either
build the positive-energy projectors for to the Dirac Hamiltonian, which includes the
Fermi-Breit operator, or evaluate them separately as the first-order perturbation in
this operator. We employ the second approach, which entails incorporating processes
involving a single virtual electron-positron pair (Breit one -ee+).

Any of the available approaches can account for the interelectronic interaction, see,
for example, Refs. (Boucard and Indelicato, 2000; Dzuba et al., 1987; Ginges and
Volotka, 2018; Shabaev et al., 1995; Zherebtsov and Shabaev, 2000; Yerokhin, 2008;
Blundell et al., 1989; Glazov et al., 2017; Bratzev et al., 1977). Previously, to evaluate
X
(3+)
a (Volotka et al., 2012) or X(2+)

a (Volotka et al., 2008), the all-order CI-DFS method
(Bratzev et al., 1977) was used. In this dissertation, we use a recursive formulation of
perturbation theory (Glazov et al., 2017). This method efficiently accesses the indi-
vidual terms of the perturbation expansion up to any order. It also guarantees that
the zeroth-order Hamiltonian is the same for rigorous QED and Breit-approximation
calculations. This approach has recently been successfully applied to analogous
computations of higher-order contributions to the g factor of Li-like ions (Glazov

1This section does not include work related to this thesis. The calculations outlined in this section
have been carried out by D. A. Glazov in Ref. (Kosheleva et al., 2020).
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et al., 2019a).
We begin with the Dirac-Coulomb-Breit equation to formulate this approach,

⇤+ (H0 +H1)⇤+|Ai = EA|Ai. (4.35)

Here ⇤+ is the positive-energy-states projection operator, which is built as the product
of one-electron projectors. The zeroth-order Hamiltonian is constructed as a sum of
the one-electron Dirac Hamiltonians,

H0 =
3X

j=1

hD,eF
�
xj

�
, (4.36)

where hD,eF is given by Eq. (3.79) and index j numerates the electrons. The or-
thogonal basis set of many-electron wave functions is formed by the Hamiltonian’s
eigenfunctions

���N(0)
E

,

⇤+H0⇤+

���N(0)
E
= E

(0)
N

���N(0)
E

. (4.37)

The Slater determinants of the one-electron solutions of the Dirac equation may be
used to construct eigenfunctions

���N(0)
E

. For the case of some reference state |Ai in
the zeroth approximation, we have

⇤+H0⇤+

���A(0)
E
= E

(0)
A

���A(0)
E

. (4.38)

The term H1 in Eq. (4.35) is the interelectronic interaction in the Breit approximation
with the screening potential being subtracted,

H1 =
3X

j<k;j,k=1

IB
�
xjk
�
-

3X

j=1

V
scr �

xj

�
. (4.39)

Then we build the perturbation theory with respect to H1, which yields the energy
EA and wave function |Ai expansions shown below

EA =
1X

k=0

E
(k)
A

, (4.40)

|Ai =
1X

k=0

���A(k)
E
=

1X

k=0

X

N

���N(0)
ED

N
(0)

| A
(k)
E

. (4.41)
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The recursive scheme for evaluating E
(k)
A

and
D
N

(0)
| A

(k)
E

order by order was pre-
sented by Glazov et al., 2017. Here we aim to construct the perturbation series for
the hfs parameter, X(k)

a . To do so we substitute Eq. (4.41) into the following relation

Xa = Ga hA |T0|Ai , (4.42)

and find

X
(k)
a = Ga

kX

j=0

D
A

(j)
|Tz|A

(k-j)
E

= Ga

kX

j=0

X

M,N

D
A

(j)
| M

(0)
ED

M
(0)

|Tz|N
(0)
ED

N
(0)

| A
(k-j)

E
.

(4.43)

It is worth noting that the normalization condition hA | Ai = 1, rather than the widely
accepted intermediate normalization

D
A

(0)
| A

E
= 1, is used here. In the no-pair Breit

approximation, Eq. (4.43) is utilized to calculate X
(k)
a . We include the contribution

of negative-energy excitations within the one-pair Breit approximation, which is
calculated as

Xa[-] = 2Ga

X

p,n

hp |Tz|ni
"p - "n

⌦
â
+
nâpA |H1|A

↵
. (4.44)

Here |pi and |ni denote the positive- and negative-energy one-electron states, respec-
tively, and â

+ and â denote the corresponding creation and annihilation operators,
respectively. Then the corresponding contribution of the kth order is

X
(k)
a [-] =2Ga

k-1X

j=0

X

M,N

D
A

(j)
| M

(0)
E

⇥

2

4
X

p,n

hp |Tz|ni
D
â
+
nâpM

(0)
|H1|N

(0)
E

"p - "n

3

5
D
N

(0)
| A

(k-j-1)
E

.

(4.45)

We utilize Eqs. (4.43) and (4.45) to calculate the required third- and higher-order
contributions from the wave-function coefficients

D
N

(0)
| A

(k)
E

obtained within the
recursive approach. We note that the formulas given above are valid for the case of
the extended Furry picture. In order to obtain formulas in original Furry picture one
just need to make the following substitutions

hD,eF ! hD, (4.46)
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and

H1 !
3X

j<k;j,k=1

IB
�
xjk
�

. (4.47)

4.3 results and discussions

First, we will go over the nuclear models and nuclear parameters that were used
in the calculations. The nucleus’ finite size is accounted for in the Fermi model for
nuclear charge density, with charge radii are taken from Ref. (Angeli and Marinova,
2013). The Bohr-Weisskopf correction ✏ is calculated within the homogeneous sphere
model, i.e. ✏ ⌘ ✏sph. Accoding to the Eq. (4.6), ✏sph reads as

✏sph = 1-
Xa,sph

Xa

, (4.48)

where Xa,sph denotes the dimensionless hfs factor calculated using the homogeneous
sphere model to account for the spatial nuclear magnitization distribution Eq. (4.7)
is considered, and Xa is calculated using the point-like nuclear magnetic moment
approximation, i.e. F(x) = 1.

Tables 4.1, 4.2, and 4.3 present the interelectronic-interaction corrections to the
ground state hfs in Li-like 15 N4+, 98Tc40+, and 209 Pb79+ ions, respectively, including
individual orders of the perturbation theory. The individual terms’ uncertainties
are determined by their convergence with respect to the number of basis functions
and their maximum orbital momentum. The results were obtained using three
different starting potentials: Coulomb, core-Hartree, and Kohn-Sham. The latter
two correspond to the extended Furry picture and allow for partial consideration
of interelectronic interaction in zeroth order. We also compare our results with the
corresponding terms from the earlier theoretical computations (Volotka et al., 2008;
Shabaev et al., 1998) for the case of the original Furry picture in Tables 4.1 and
4.3. The one-electron relativistic factor X(0)

a corresponds to the product A(↵Z)(1- �)

from Refs. (Volotka et al., 2008; Shabaev et al., 1998), the one photon exchange
correction X

(1)
a , and the higher-order terms X

(2+)
a , which correspond to the notations

B(↵Z)/Z and C(↵Z,Z)/Z2 or C(0)/Z2. We want to emphasize that we corrected the
values from Refs. (Volotka et al., 2008; Shabaev et al., 1998) (see third column in
Tables 4.1 and 4.3) to the Fermi model of the charge distribution with the radii from
Ref. (Angeli and Marinova, 2013) and to the pointlike magnetization distribution as
calculated in this thesis. As a result, we can conclude that the main reason for our
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Coulomb Core-Hartree Kohn-Sham
This work Volotka et al., 2008a Volotka et al., 2008 This work This work

X
(0)
a 1.004 912 1.004 91 1.004 89 0.617 954 0.618 795

X
(1)
a -0.381 459 -0.381 46 -0.381 01 0.023 225 0.019 646

X
(2)
a 0.018 867 0.000 249 0.003 200

X
(3)
a -0.001 027(12) 0.000 085(3) -0.000 172(3)

X
(4)
a 0.000 139(8) -0.000 022(7) 0.000 033(4)

X
(5)
a 0.000 048(2) 0.000 006(3) -0.000 006(1)

X
(6)
a 0.000 013(1) -0.000 001(1) 0.000 001

X
(7)
a 0.000 003(1) 0.000 001 -0.000 000

X
(3+)
a -0.000 825(15) 0.000 068(8) -0.000 144(5)

X
(2+)
a 0.018 042(15) 0.018 00 0.017 98 0.000 317(8) 0.003 056(5)

Total 0.641 495(15) 0.641 45 0.641 86 0.641 496(8) 0.641 497(5)
a Results from Volotka et al., 2008, recalculated to the nuclear models and nuclear parameters

employed in this paper.

Table 4.1: Interelectronic-interaction contributions to the ground-state hfs in Li-like 15N4+

with various starting potentials: Coulomb, Core-Hartree, and Kohn-Sham, in terms
of Xa, defined by Eq. (4.19).

Coulomb core-Hartree Kohn-Sham
X
(0)
a 1.233 403 0 1.145 748 3 1.148 599 7

X
(1)
a -0.077 938 0 0.010 485 0 0.007 506 6

X
(2)
a 0.000 755 7 -0.000 022 3 0.000 106 1

X
(3)
a -0.000 008 6 0.000 001 2 -0.000 000 5

X
(4)
a 0.000 000 1 -0.000 000 1 0.000 000 0

X
(3+)
a -0.000 008 4 0.000 001 2 -0.000 000 5

Total 1.156 212 3 1.156 212 2 1.156 212 0

Table 4.2: Contributions to the ground-state hfs in Li-like 98Tc40+ with different starting
potentials: Coulomb, core-Hartree, and Kohn-Sham, in terms of Xa, as defined by
Eq. (4.19).
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Coulomb Core-Hartree Kohn-Sham
This work Shabaev et al., 1998a Shabaev et al., 1998 This work This work

X
(0)
a 2.397 606 5 2.397 6 2.398 7 2.292 003 7 2.300 174 6

X
(1)
a -0.085 899 5 -0.085 9 -0.081 7 0.020 407 4 0.012 164 4

X
(2)
a 0.000 736 3 0.000 023 5 0.000 096 6

X
(3)
a -0.000 008 2 0.000 000 5 -0.000 000 4

X
(4)
a 0.000 000 1 0.000 000 0 0.000 000 0

X
(3+)
a -0.000 008 1 0.000 000 5 -0.000 000 4

X
(2+)
a 0.000 728 2 0.000 1 0.000 1 0.000 024 0 0.000 096 2

Total 2.312 435 2 2.311 8 2.317 1 2.312 435 1 2.312 435 2
a Results from Shabaev et al., 1998, recalculated to the nuclear models and nuclear parameters

employed in this paper.

Table 4.3: Contributions to the ground-state hfs in Li-like 209Pb79+ with different starting
potentials: Coulomb, core-Hartree, and Kohn-Sham, in terms of Xa, as defined by
Eq. (4.19).

values differing from those calculated in (Volotka et al., 2008; Shabaev et al., 1998) is
due to the different treatment of the two-photon exchange

h
X
(2)
a

i
and higher-order

h
X
(3+)
a

i
terms. Indeed, Tables 4.1 and 4.3 show that X(0)

a and X
(1)
a agree well with

the values obtained in Refs. (Volotka et al., 2008; Shabaev et al., 1998). While the
higher orders X

(2+)
a are improved over Ref. (Volotka et al., 2008) due to the use of

recursive perturbation theory in the current investigation, and over Ref. (Shabaev
et al., 1998) due to the rigorous evaluation of the two photon-exchange correction.
When compared to the perturbation theory based on the Coulomb starting potential,
the framework of the extended Furry picture improves convergence (original Furry
picture). As shown in Tables 4.1, 4.2, and 4.3, using the extended Furry picture
improves the accuracy of interelectronic-interaction correction, particularly in the
low-Z region. For example, in the case of nitrogen 15 N4+, the total value’s uncertainty
is reduced by a factor of four.

Table 4.4 and Figure 4.5 compare the Breit and QED treatments of the one-
h
X
(1)
a

i

and two-photon exchange
h
X
(2)
a

i
corrections to the ground-state hfs in Li-like ions.

The values are obtained using the Kohn-Sham potential within the extended Furry
picture. Within the Breit approximation, two results are distinguished: "no-pair"
(Breit no-ee+) and "one-pair" (Breitone-ee+), as discussed in the previous Subsection.
The results in Table 4.4 and Figure 4.5 show that for light ions, the difference between
the QED approach and both Breit approximations (Breit no-ee+/Breit one -ee+) is less
than 0.1%, but it grows rapidly as Z increases. For gold (Z = 79), the difference
between the rigorous QED treatment and the Breit one -ee+ approximation for the
two-photon exchange term is about 6%, while the QED-Breit no-ee+ difference is
more than 12%.
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QED

Breitone�ee+

Breitno�ee+

Z

X
a
(2
) ⇥
Z

2

Figure 4.5: The two-photon-exchange correction X
(2)
a to the ground-state hfs in Li-like ions

scaled by a factor Z2 as a function of the nuclear charge number Z. The rigorous
QED calculation results (solid magneta) are compared to the Breit approximation
calculations: no-pair (Breit no-ee+ , red dashed) and one-pair (Breit one-ee+ , dark
blue dash-dotted). The Kohn-Sham starting potential is used to obtain all values.

Table 4.5 displays the interelectronic-interaction contributions calculated with the
Kohn-Sham starting potential in terms of the dimensionless hfs parameter Xa over a
wide range of nuclear charge numbers Z = 7- 82. The zeroth-order values X

(0)
a are

displayed in the second column, while the contributions of the first
⇣
X
(1)
a

⌘
, second

⇣
X
(2)
a

⌘
, and higher orders

⇣
X
(3+)
a

⌘
are displayed in columns three through five,

respectively. The total value of Xa and the Bohr-Weisskopf correction ✏sph evaluated
within the homogeneous sphere model are given in the last two columns. The total
value’s uncertainty is calculated by taking the root-sum-square of the numerical
uncertainties of the individual corrections and the unknown QED contribution in
the third order in 1/Z. The third-order Breit approximation is only valid up to order
(↵Z)2, hence the treatment of the X

(3+)
a term in the context of recursive perturbation

theory based on the Breit approximation is only valid up to order (↵Z)2. Thus, in the
current work, the unknown QED contribution of the third order in 1/Z is estimated
to be (↵Z)3/Z3.

We also compare our total values of the interelectronic-interaction contribution to
the corresponding results of the earlier theoretical calculations (Volotka et al., 2008;
Shabaev et al., 1998) in Table 4.5. We would like to emphasize the values of the total
interelectronic-interaction correction obtained in Refs. (Volotka et al., 2008; Shabaev
et al., 1998) are corrected to the nuclear models and nuclear parameters used in
this thesis. Unlike Refs. (Volotka et al., 2008; Shabaev et al., 1998), our results are
obtained within the context of the extended Furry picture; thus, we can not compare
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Ion QED Breitone-ee+ Breitno-ee+

15N4+
X
(1)
a 0.019 646 3(2) 0.019 645 9(2) 0.019 641 2(2)

X
(2)
a 0.003 199 9(3) 0.003 198 2(3) 0.003 198 5(3)

98Tc40+ X
(1)
a 0.007 506 6 0.007 489 1 0.007 435 5

X
(2)
a 0.000 106 1 0.000 103 5 0.000 102 8

197Au76+
X
(1)
a 0.011 326 4 0.011 169 9 0.011 224 4

X
(2)
a 0.000 089 0 0.000 083 7 0.000 079 4

Table 4.4: Comparison of the one-[X(1)
a ] and two-photon exchange [X(2)

a ] corrections to the
ground-state hfs in Li-like ions calculated using the rigorous QED approach and
the Breit approximations: no-pair (Breitno-ee+) and one-pair (Breitno-ee+), see
text for details. The values are calculated using the Kohn-Sham starting potential.

our results with Refs. (Volotka et al., 2008; Shabaev et al., 1998) term by term; instead,
only total values (see column 6 in Table 4.5) can be compared.

Table 4.5 shows that for the light ions, for example, 15 N4+, the difference between
the current results and the ones given in Ref. (Volotka et al., 2008) is about 0.006%
and decreases rapidly as the nuclear charge number Z increases. It is explained by
the fact that the higher-order corrections X

(3+)
a converge faster with increasing Z in

the framework of perturbation theory within the extended Furry picture used in
this investigation. For the high-Z region, we also compare our results to those of
Ref. (Shabaev et al., 1998). As shown in Table 4.5, the difference between the current
results and Ref. (Shabaev et al., 1998) is about 0.02% - 0.03%, which is significantly
greater than in the middle-Z region. It is primarily explained by the fact that in the
work (Shabaev et al., 1998), the correction X

(2)
a was estimated by its nonrelativistic

limit and the contribution X
(3+)
a was ignored. Furthermore, in contrast to previous

calculations (Volotka et al., 2008; Shabaev et al., 1998), we have more thoroughly
examined all of the uncertainties, i.e., numerical error of the individual terms and
unknown higher-order contributions. Because the uncertainty of the Bohr-Weisskopf
correction dominates throughout the nuclear charge range under consideration, the
current results do not improve the hfs values of Li-like ions. The specific differences
in the hfs values for different charge states (Shabaev et al., 2001; Volotka and Plunien,
2014), on the other hand, can significantly reduce this uncertainty. To obtain the most
accurate theoretical predictions for the specific differences, simultaneous evaluation
of the screened QED corrections is also required.
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Ion X
(0)
a X

(1)
a X

(2)
a X

(3+)
a Total ✏sph

15N4+ 0.618 794 6 0.019 646 3(2) 0.003 199 9(3) -0.000 144(5) 0.641 497(5) 0.000 268 0
0.641 45a

23Na8+ 0.758 442 6 0.015 527 7(1) 0.001 371 5(2) -0.000 037 0(13) 0.775 304 9(14) 0.000 496 5
0.775 28a

31P12+ 0.833 026 7 0.012 682 5 0.000 754 8 -0.000 014 4(5) 0.846 449 6(6) 0.000 733 5
0.846 43a

39K16+ 0.884 885 5 0.010 832 6 0.000 476 9 -0.000 007 2(3) 0.896 187 8(5) 0.001 034 0
0.896 17a

51V20+ 0.927 883 1 0.009 600 0 0.000 329 6 -0.000 003 9(2) 0.937 808 8(4) 0.001 355 1
0.937 81a

55Mn22+ 0.948 019 4 0.009 141 2 0.000 280 9 -0.000 002 9(1) 0.957 438 5(4) 0.001 554 7
0.957 43a

57Fe23+ 0.957 971 8 0.008 942 9 0.000 260 6 -0.000 002 5(1) 0.967 173 1(4) 0.001 655 7
0.967 16a

59Co24+ 0.967 921 1 0.008 762 6 0.000 242 5 -0.000 002 3(1) 0.976 923 9(4) 0.001 753 4
61Ni25+ 0.977 891 1 0.008 599 4 0.000 226 4 -0.000 002 0(1) 0.986 714 5(4) 0.001 859 6

0.986 71a
69Ga28+ 1.008 153 0 0.008 195 4 0.000 187 1 -0.000 001 4(1) 1.016 534 1(4) 0.002 230 8
79Br32+ 1.050 690 7 0.007 824 2 0.000 149 7 -0.000 001 0 1.058 663 6(4) 0.002 776 1
89Y36+ 1.097 198 8 0.007 605 1 0.000 124 2 -0.000 000 6 1.104 927 5(4) 0.003 352 3

a Volotka et al., 2008, recalculated to the nuclear models and nuclear parameters employed in this
thesis.

b Shabaev et al., 1998, recalculated to the nuclear models and nuclear parameters employed in this
thesis.

Table 4.5: Interelectronic-interaction contributions to the ground-state hfs in Li-like ions
obtained with the Kohn-Sham potential, in terms of the hfs parameter Xa defined
by Eq. (4.4). In the last two columns, the total value of Xa and the Bohr-Weisskopf
correction ✏sph evaluated within the homogeneous sphere model are also presented.
The uncertainty of the total value (numbers in parentheses) is determined as a
root-sum-square of the numerical uncertainties of the individual corrections and the
unknown QED contribution of the third order in 1/Z estimated as (↵Z)3/Z3. The
total values are compared with the ones from Refs. (Volotka et al., 2008; Shabaev
et al., 1998).
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TABLE 4.5. (Continued.)
Ion X

(0)
a X

(1)
a X

(2)
a X

(3+)
a Total ✏sph

98Tc40+ 1.148 599 7 0.007 506 6 0.000 106 1 -0.000 000 5 1.156 212 0(4) 0.004 094 4
109Ag44+ 1.206 400 7 0.007 514 4 0.000 093 3 -0.000 000 3 1.214 008 1(4) 0.004 961 0
121Sb48+ 1.272 127 8 0.007 619 3 0.000 084 3 -0.000 000 3 1.279 831 1(4) 0.005 937 6

1.279 5b
133Cs52+ 1.347 184 0 0.007 816 7 0.000 078 2 -0.000 000 2 1.355 078 7(4) 0.007 086 5
141Pr56+ 1.433 721 5 0.008 109 6 0.000 074 7 -0.000 000 2 1.441 905 6(4) 0.008 410 4

1.441 6b
151Eu60+ 1.533 117 2 0.008 497 9 0.000 073 3 -0.000 000 2 1.541 688 2(4) 0.010 032 4

1.541 4b
165Ho64+ 1.648 631 7 0.008 994 7 0.000 074 0 -0.000 000 2 1.657 700 2(4) 0.011 958 0

1.657 4b
175Lu68+ 1.783 175 6 0.009 611 4 0.000 076 5 -0.000 000 2 1.792 863 3(4) 0.014 224 2

1.792 6b
185Re72+ 1.945 250 8 0.010 390 4 0.000 081 6 -0.000 000 2 1.955 722 6(4) 0.016 444 1

1.955 4b
197Au76+ 2.134 320 5 0.011 326 4 0.000 089 0 -0.000 000 3 2.145 735 7(4) 0.019 382 4
209Pb79+ 2.300 174 6 0.012 164 4 0.000 096 6 -0.000 000 4 2.312 435 2(4) 0.021 811 3

2.311 8b

b Ref. Shabaev et al., 1998, recalculated to the nuclear models and nuclear parameters employed in
this thesis.
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In this chapter, we aim to explain a persisting disagreement between theoretical
and experimental values of a g factor of lithiumlike silicon and calcium established
by Glazov et al., 2019a and Yerokhin et al., 2020. To do so, we analyse in details
the many-electron QED correction to the g factor of lithiumlike ions: interelectron-
interaction (Secs. 5.3 and 5.4) and QED corrections (Secs. 5.5 and 5.6). In Sec. 5.2 we
carefully analyze the possible ways of estimation of the unknown high order part
of the many-electron QED contributions. And finally, we provide a reader with the
final theoretical values of the g factor of lithiumlike silicon and calcium (Sec. 5.7).

This chapter is based on the following reference:

g Factor of Lithiumlike Silicon and Calcium: Resolving the Disagreement between
Theory and Experiment
V. P. Kosheleva, A. V. Volotka, D. A. Glazov, D. V. Zinenko, and S. Fritzsche
Phys. Rev. Lett., accepted for publication (2022); arXiv:2201.00612.

5.1 theory

The interaction of the bound electron with the external magnetic field B is represented
by the operator

V
magn(x) = -Bµz = -B

e

2
[x ⇥↵]z, (5.1)

where, without loss of generality, B is assumed to be aligned in z-direction, µz is the
z-projection of the electron magnetic moment. In the Li-like atom with a spinless
nucleus, the magnetic field induces the energy shift

�Ea = -
e

2
gmaB, (5.2)

61
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where g is the electronic g factor and ma is the z-projection of the total angular
momentum ja of the ground (1s)22s state. Within the independent-electron ap-
proximation, the energy shift �Ea is found as an expectation value of Vmagn with
the unperturbed three-electron one-determinant wave function |ai = |jamai. The
corresponding lowest-order g-factor value is

g
(0)
C = -

2 ha |
P

i
V

magn(xi)|ai
emaB

, (5.3)

where index i refers to the ith electron of the atom. We denote by g
(0)
C the value

obtained for the Coulomb nuclear potential (original Furry picture). Alternatively,
one can introduce an effective screening potential in the Dirac equation (extended
Furry picture), which leads to the corresponding "screened" value of g(0), see the
discussion in Sec. 5.3.

In the case when one-electron wave functions are solutions of the Dirac equation
with the pointlike Coulomb potential of the nucleus, the lowest-order g factor is
known analytically as gD and given by the Breit formula (Breit, 1928) for the 2s state
(Glazov et al., 2014)

gD =
2

3
(1+

p
2+ 2�) = 2-

(↵Z)2

6
+ . . . , (5.4)

where � =
p

1- (↵Z)2. The lowest-order result g
(0)
C has to be supplemented by

various QED corrections

g = g
(0)
C +�gint +�gQED +�gnuc. (5.5)

So far, the interelectronic-interaction correction �gint was calculated rigorously (to
all orders in ↵Z) up to the second order in 1/Z (Wagner et al., 2013; Volotka et al.,
2012; Volotka et al., 2014; Yerokhin et al., 2021). The QED correction �gQED consists
of one-electron and many-electron (screened) QED effects. The leading one-electron
QED correction is represented by one-loop self-energy and vacuum polarization
diagrams in the presence of magnetic field. This contribution was evaluated to all
orders in ↵Z, e.g., in Refs. (Yerokhin et al., 2004; Glazov et al., 2006; Yerokhin and
Harman, 2017; Cakir et al., 2020). The screened one-loop QED correction of the first
order in 1/Z was rigorously calculated in Refs. (Volotka et al., 2014; Volotka et al.,
2009; Glazov et al., 2010; Andreev et al., 2012). The higher-order QED contributions
are known only within some approximation so far (Glazov et al., 2004; Pachucki
et al., 2005b; Pachucki et al., 2005a; Jentschura, 2009; Yerokhin and Harman, 2013;
Czarnecki and Szafron, 2016; Czarnecki et al., 2018; Czarnecki et al., 2020; Aoyama
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et al., 2019; Shabaev et al., 2002). The contribution, �gnuc , stands for the nuclear
effects, such as nuclear recoil and nuclear polarization. Recently, the nuclear recoil
effect in Li-like ions was studied in Refs. (Shabaev et al., 2017; Malyshev et al., 2017b;
Shabaev et al., 2018). At the current level of experimental and theoretical accuracy,
the nuclear polarization effect is negligible.

In the present thesis, we focus on �gint and �gQED corrections. These corrections
are to be obtained within the framework of the bound-state QED perturbation theory.
To accomplish this, the following steps must be taken:

1. In Eqs. (4.10)–(4.13), replace �V(x) with V
magn(x) to construct the interaction

Hamiltonian in the original (4.12) or extended (4.13) Furry picture.

2. Evaluate the energy shift corrections �Eint/QED due to the interelectronic inter-
action (int) or QED effects (QED) using formulas (3.65)–(3.67) where �g is built
using the Feynman rules.

3. We limit ourselves to linear effects in V
magn, just as we did with hfs. To put it

another way, we only consider the Feynman diagrams of the first order in the
magnetic interaction.

4. The corresponding contribution to the g factor (see Eq. (5.3)) is given by

�gint/QED = -
2�Eint/QED

(eBma)
. (5.6)

Within the framework of bound-state QED perturbation theory, each of the contribu-
tions �gint and �gQED can be expanded as follows

�g = �g
(1) +�g(2) +�g(3+), (5.7)

where the ith order in ↵ is denoted by the superscript i and �g
(3+) denotes all

higher orders. So far, only three terms have been rigorously evaluated, namely
�g

(1)
int , one-photon exchange, �g(2)int , two-photon exchange, and �g(1)QED, one-electron

self-energy and vacuum polarization, to all orders in ↵Z without any additional
approximations. The second order QED correction �g(2)QED is divided into two parts:

the one-electron two-loop QED term �g
(2)
QED-1e and the many-electron (screened)

QED term �g
(2)
QED-me . While the latter has been independently calculated in Refs.

(Volotka et al., 2009; Glazov et al., 2010) and (Yerokhin et al., 2020), the former is
currently being evaluated (Yerokhin and Harman, 2013; Sikora et al., 2020; Debierre
et al., 2021).

The terms that are not yet known to all orders in ↵Z are approximated, for example,
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within the ↵Z expansion or by using certain efficient operators. These terms are
presented as follows

�g
(i) = �g

(i)
L +�g

(i)
H , (5.8)

account, where �g(i)L is the leading-order part, which is taken into account, and �g(i)H
stands for the currently unknown higher-order part, whose value must be approxi-
mated to assign the uncertainty to �g(i). Note that depending on the computation
technique, the leading-order terms �g(i)L might be defined in a variety of ways. So, in
the NRQED approach, �g(i)L typically represents the contribution of the lowest order
in ↵Z. Within the Breit approximation, �g(i)L , on the other hand, contains higher
orders in ↵Z, but only the leading order is complete. Generally, in comparison to
�g

(i)
L , the higher-order part �g(i)H is suppressed by the factor (↵Z)2.

5.2 third-order correction �g
(3+) : estimation of the higher order

part �g(3+)
H

As previously stated in the original Furry picture, the binding potential only includes
the nucleus’ Coulomb field, implying that the electron-electron interaction is com-
pletely ignored in the zeroth order. The perturbation theory is used to account for
this interaction. In this case, the effective expansion parameter in Eq. (5.7) is 1/Z.
Because the rigorous treatment of �g(i) is currently limited by the second order, the
higher-order terms in ↵Z are evaluated to the leading order, i.e., only the �g(3+)

L part.
This can be accomplished in the NRQED approach by using accurate variational wave
functions in the Hyleraas basis (Yerokhin et al., 2017), the configuration interaction
method (Bratzev et al., 1977; Glazov et al., 2004), or the recursive perturbation theory
(Glazov et al., 2019a; Glazov et al., 2017) in the Breit approximation.

The theoretical accuracy is currently limited primarily by the missing higher-
order contributions �g(3+)

H , which can be estimated in a variety of ways. The
first option is based on the higher-order term from the perturbation theory’s pre-
vious order:: (i)�g

(3+)
H ' �g

(2)
H /Z. The second option, on the other hand, is

solely based on the leading-order term from the same order of perturbation theory:
(ii)�g

(3+)
H ' �g

(3+)
L (↵Z)2. Finally, the third method combines both schemes (i) and

(ii), employing both the leading-order terms and the higher-order correction from
the preceding order of perturbation theory: (iii)�g(3+)

H ' �g
(2)
H

⇣
�g

(3+)
L /�g

(2)
L

⌘
. The

estimations based on these schemes can differ by an order of magnitude. As a result,
it is critical to choose wisely among these estimation schemes.

The higher-order contribution g
(3+), including the currently unknown part �g(3+)

H ,
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can be significantly reduced by introducing an effective local screening potential
into the Dirac equation, which is referred to as the extended Furry picture. The
perturbation series is rearranged in such a way that the dominant part of each or-
der is transferred to lower orders. This "rearrangement" is, of course, dependent
on the screening potential chosen. When all orders of the perturbation theory are
incorporated entirely, the total result should be independent of the zeroth-order
approximation. In fact, the higher-order part �g(3+)

H is missing at present. As a result,
the difference in total values obtained with various screening potentials allows one
to estimate the magnitude of this part.

In this chapter, we employ four types of screening potential: core-Hartree (CH),
Kohn-Sham (KS), Dirac-Hartree (DH), and Dirac-Slater (DS). The expressions for
these potentials can be found in Subsection 3.4.2.

5.3 interelectronic interaction : calculation

The interelectronic-interaction correction �gint to the g factor can be expanded as

�gint = �g
(1)
int +�g

(2)
int +�g

(3+)
int . (5.9)

Here the ith order in ↵ is denoted by the superscript i while �g(3+)
int refers to all higher

orders. In the framework of the extended Furry picture, one can obtain zeroth-order
value g

(0) using Eq. (5.3) with wave function |ai constructed from the one-electron
wave-function being a solution of Dirac equation with some effective potential. We
note, that g(0) already partially includes interelectronic-interaction effects, therefore,
within extended Furry picture, the additional term �g

(0) in expansion Eq. (5.9)
appears

�g
(0) = g

(0) - g
(0)
C . (5.10)

The contributions in Eq. (5.9) are defined by the set of diagrams depicted on Figs.
4.1–4.4. The only difference is that now the dashed line that ends with a triangle
represent the interaction with the external magnetic field �V = V

magn. The first-order
correction �g(1)int corresponds to the relatively straightforward one-photon exchange
diagrams shown in Fig. 4.1. It was first computed in Ref. (Shabaev et al., 2002), and
now all that remains is to compute it with the required numerical accuracy for the
screening potentials under consideration.

The two-photon-exchange contribution �g(2)int is represented by the Feynman di-
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agrams shown in Figs. 4.2–4.4. This correction is substantially more complicated,
requiring the development of a numerical procedure as well as the derivation of
the complete set of formulae. The formulas for contributions �g(1)int and �g

(2)
int are

very similar to those for hfs, with the exception that �V is replaced by V
magn and

a different multiplicative factor is used; for more information, see the Appendix.
As a result, the numerical evaluation principles are the same as in the case of hfs.
The dual-kinetic-balance (DKB) finite-basis set approach (Shabaev et al., 2004) for
the Dirac equation with B-splines as the basis functions (Sapirstein and Johnson,
1996) is used to conduct infinite summations over the complete Dirac spectrum. The
number of basis functions is gradually raised from N = 132 to N = 252 to do the
extrapolation N ! 1 in order to establish a clear convergence pattern of the results.
The absolute extrapolation uncertainty is limited to a maximum of 10-10. The partial
wave summing over the Dirac quantum number  is ended at ||max = 16, and the
remainder is approximated with an absolute uncertainty of 3⇥ 10

-11 or less using
least-squares inverse polynomial fitting. The numerical evaluation of the two-photon-
exchange correction has considerable cancellations between various terms, as well as
poor partial-wave expansion convergence. In comparison to Refs. (Volotka et al., 2014;
Glazov et al., 2019a), we have significantly improved the numerical integrations over
the radial variable x and the virtual-photon energy !, attaining relative accuracy of
10

-10 or lower. As a result, all sources of numerical uncertainty have been eliminated,
and the two-photon exchange is assured to have a total numerical accuracy of 10-10

or better. To ensure the consistency of our implementation, we calculate individual
terms of the two-photon exchange correction within the Feynman and Coulomb
gauges, and the total results are found to be gauge invariant to a high degree of
precision. We also compare the results of the two-photon-exchange correction to those
obtained using the Breit approximation. First, the accuracy of the Breit limit of the
QED formulas is established by substituting the interelectronic-interaction operator
with its frequency-independent counterpart and properly restricting the summing
over the intermediate states. Second, the correct behavior of the numerical results is
investigated. All of this further confirms the accuracy of the current calculations.

The Breit approximation is used to compute the remaining higher-order contri-
bution �g(3+)

int, L . We employ the recursive perturbation theory proposed for binding
energies in Ref. (Glazov et al., 2017) and extended to the case of external field (g
factor, hyperfine splitting) in Refs. (Glazov et al., 2019a; Kosheleva et al., 2020) to
achieve this. The DKB finite-basis-set approach (Shabaev et al., 2004; Sapirstein and
Johnson, 1996) is also used for numerical computations. Because the many-electron
wave function basis set must be considered within this method, the number of basis
functions required to be adequate for the available computational resources is much
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Coulomb CH KS DH DS
Z = 14

g
(0) - g

(0)
C 348.2661 341.3682 353.1638 329.1102

�g
(1)
int

321.5903 -33.5491 -25.0951 -39.2815 -11.7598
�g

(2)
int

-6.8782(1) 0.1362(1) -1.4838(1) 1.1237(1) -2.5910(1)
-6.8787(1)a 0.137b

�g
(3+)
int,L 0.0934(21) -0.0443(10) 0.0202(12) -0.1952(18) 0.0505(12)

0.0942(4)c -0.046(6)b

�g
(3+)
int,H 0.0000(74) 0.0000(14) 0.0000(18) 0.0000(12) 0.0000(20)

0.0000(14)a

Total 314.8055(77) 314.8089(17) 314.8095(22) 314.8107(22) 314.8099(23)
314.8058(15)a

Z = 20

g
(0) - g

(0)
C 505.2339 494.1961 513.4290 475.2654

�g
(1)
int

461.1479 -51.0429 -38.3914 -60.1565 -18.3166
�g

(2)
int

-6.9338(1) 0.1291(1) -1.5297(1) 1.1550(1) -2.6958(1)
-6.9341(3)a 0.129b

�g
(3+)
int,L 0.0661(17) -0.0300(8) 0.0155(12) -0.1359(13) 0.0388(13)

0.0695(12)c

�g
(3+)
int,H 0.0000(108) 0.0000(24) 0.0000(20) 0.0000(20) 0.0000(30)

0.0000(22)a

Total 454.2802(109) 454.2902(25) 454.2905(24) 454.2915(24) 454.2918(33)
454.2834(25)a

a Yerokhin et al., 2021; b Volotka et al., 2014; c Yerokhin et al., 2017.

Table 5.1: Interelectronic-interaction contributions �gint to the ground-state g factor of
28Si11+ and 40Ca17+ for various starting potentials: Coulomb, core-Hartree (CH),
Kohn-Sham (KS), Dirac-Hartree (DH), and Dirac-Slater (DS), in units of 10-6.

lower than for the two-photon-exchange contribution. Nonetheless, we are able
to reach a numerical uncertainty that is lower than that of the currently unknown
higher-order part �g(3+)

int, H estimate. The contributions of the third, fourth, and fifth
orders of perturbation theory are required at this level. We should also remark
that under perturbation theory, we only require a few percent uncertainty for the
third-order contribution and considerably more for the fourth and fifth orders to
obtain this level of precision. This differs from all-order approaches, such as CI-DFS
(Volotka et al., 2014; Glazov et al., 2004), which need a numerical uncertainty of
10

-5 - 10
-6 since they only yield entire result �gint, L within the Breit approximation.

5.4 interelectronic interaction : results

The results of the interelectronic-interaction correction for Si11+ and Ca17+ ions are
shown in Table 5.1. In the extended Furry picture, the zeroth-order value minus the
Coulomb value, �g(0), makes a important contribution to �gint. As mentioned in the
previous Section 5.3, the one- and two-photon-exchange corrections are calculated
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to all orders in ↵Z to a precision of 10-10 or greater. For comparison, the values for
the two-photon exchange from Refs. (Volotka et al., 2014; Yerokhin et al., 2021) are
provided. Table 5.1 shows that our values are one order of magnitude more accurate
than those of Ref. (Volotka et al., 2014), whereas the marginal agreement for the
Coulomb potential is found with Ref. (Yerokhin et al., 2021). The results of Refs.
(Yerokhin et al., 2021; Yerokhin et al., 2017) obtained using the NRQED method for
the Coulomb potential agree well with our results for the third- and higher-order
correction �g(3+)

int,L obtained using the Breit approximation.
Before we get to the total results, let us talk about the uncertainty of the higher-

order term �g
(3+)
int, H, which is currently unknown. The three methods of estimate

outlined above yield (i) 0.0037, (ii) 0.0013, and (iii) 0.0008, in units of 10-6 for the
silicon ion and the Coulomb potential. These estimations differ by up to a factor
of 5. In this case, which one should be chosen? To make the best decision, we use
the following logic. The final results should be the same for all starting potentials
once �gint has been computed to all orders without approximations. As a result, the
current differences between the Coulomb, CH, KS, DH, and DS results are due to
�g

(3+)
int, H. To ensure that the results overlap, we chose the first (biggest) uncertainty

multiplied by a factor of 2. While, Yerokhin et al., 2021 and Yerokhin et al., 2017
employed the smallest uncertainty (third choice) multiplied by 1.5 (Yerokhin et al.,
2017) and 2 (Yerokhin et al., 2021). Their uncertainty is 5 times smaller, and their total
result for the Coulomb potential does not overlap with our values for other starting
potentials, both for silicon and calcium, as shown in the Table.

Finally, we average our total values from four screening potentials (CH, KS, DH,
DS) to get 314.8098(22)⇥ 10

-6 for Z = 14 and 454.2910(24)⇥ 10
-6 for Z = 20 for the

interelectronic-interaction correction.

5.5 qed corrections : calculation

The QED correction �gQED to the g factor can be expanded as

�gQED = �g
(1)
QED +�g

(2)
QED +�g

(3+)
QED. (5.11)

Here the ith order in ↵ is denoted by the superscript i while �g(3+)
QED refers to all

higher orders. The first-order contribution �g(1)OED, which is represented by standard
radiative diagrams, self-energy, and vacuum polarization in the presence of an
external magnetic field, has been rigorously evaluated, for example, by Yerokhin
et al., 2004; Glazov et al., 2006; Yerokhin and Harman, 2017; Cakir et al., 2020.
The second-order contribution �g

(2)
QED can split into two parts: the one-electron
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Figure 5.1: Feynman diagrams illustrating the screened self-energy correction to the bound-
electron g factor. The counterterm diagrams are shown in the second line. The
notations are identical to those shown in Fig. 4.1 The only difference is that now
the magnetic interaction �V is equal to the V

magn, i.e. �V = V
magn.

part �g(2)QED-e (two-loop QED) and the many electron part �g(2)QED-me (screened
QED). The two-electron self-energy diagrams (Fig. 5.1, first line) and two-electron
vacuum polarization diagrams (Fig. 5.2, first line) depict the screened QED part
�g

(2)
QED-me . Because we are working within the framework of the extended Furry

picture, additional counterterm diagrams appear (see the second line in Figs. 5.1
and 5.2). The screened vacuum-polarization contribution was originally computed
in Ref. (Andreev et al., 2012) for the hyperfine interaction as an external field, and
then modified in Refs. (Volotka et al., 2014; Cakir et al., 2020) for the g-factor case.
Calculating it with the needed accuracy for middle-Z ions is currently not a problem.
Volotka et al., 2009; Glazov et al., 2010; Yerokhin et al., 2020 calculated the screened
self-energy contribution for the Coulomb potential and Volotka et al., 2014 for the
case of screening potentials. Meanwhile, due to the poor basis-set and partial-wave
convergence, achieving a high level of numerical accuracy was always a challenge.
Therefore, we describe in detail the current improvements to the calculation procedure
below. Refs. (Volotka et al., 2014; Volotka et al., 2009; Glazov et al., 2010) contain
formal expressions for two-electron self-energy diagrams. The numerical procedure
follows the same principles as the two-photon exchange. To achieve the required
accuracy, the numerical integrations over the radial variable x and the virtual-photon
energy ! have been improved. To begin, we calculate the individual partial wave
terms up to ||max = 20 for various numbers of basis functions N and extrapolate to
N ! 1 to achieve an absolute uncertainty of 10-10 or less for each . The greater ||,
the greater N is required. Then we sum these terms and use least-squares inverse
polynomial fitting to estimate the tail of || > ||max. This extrapolation’s absolute
uncertainty is less than 2⇥ 10

-10. We should remark that the numerical evaluation
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Figure 5.2: Feynman diagrams illustrating the screened vacuum-polarization correction to
the bound-electron g factor. The counterterm diagrams are shown in the second
line. The notations are identical to those shown in Fig. 4.1 The only difference is
that now the magnetic interaction �V is equal to the V

magn, i.e. �V = V
magn .

of screened self-energy correction for the Coulomb potential includes considerable
term cancellations, resulting in huge numerical inaccuracy. The use of the screening
potential reduces the magnitude of cancellations and increases accuracy significantly.
So far, the higher-order QED contributions can only be approximated. Pachucki et al.,
2005b; Pachucki et al., 2005a; Jentschura, 2009; Yerokhin and Harman, 2013; Czarnecki
and Szafron, 2016; Czarnecki et al., 2018; Czarnecki et al., 2020 calculated the one-
electron two-loop term �g

(2)
QED-1e within the ↵Z expansion up to order ↵2(↵Z)5. We

also compute the interelectronic-interaction correction to the two-loop term using two
different methods. Within the first approach, we extract the binding part (beyond the
free-electron contribution) of this term and multiply it by the "screening coefficient,"
which is dependent on the screening potential. The binding part of the one-loop
term is used to identify this coefficient. In this manner, we obtain the screened
values of �g(2)QED-le shown in Table 5.2 in the following Section 5.6. In the second
approach, we calculate the screening effect on the two-loop contribution by averaging
the corresponding term of the effective Hamiltonian from Ref. (Hegstrom, 1973). The
results of these two calculation methods are in perfect agreement with each other.
The free-electron part

⇥
(↵Z)0

⇤
as well as the leading-order

⇥
(↵Z)2

⇤
correction for the

three-loop (and more) one-electron contribution �g(3+)
QED-1e are taken from Aoyama

et al., 2019 and Shabaev et al., 2002, respectively.
The effective Hamiltonian from Ref. (Hegstrom, 1973) is used to compute the

higher-order many-electron QED correction �g
(3+)
QED-me,L . In Refs. (Shabaev et al.,

2002; Glazov et al., 2004), this approach was proposed and implemented up to the
first order in 1/Z (�g(1)QED,L and �g(2)QED-me,L terms). The multi-recursive perturbation
theory scheme was constructed in Ref. (Glazov et al., 2019a) to effectively evaluate
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the contributions of arbitrary order in 1/Z. This scheme extends the recursive
formulation of perturbation theory (Glazov et al., 2017) to the case of Hamiltonian
with several effective operators that must be considered at the same time. In this
method, �g(3+)

QED-me,L to arbitrary order computations in 1/Z were made possible.

5.6 qed corrections : results

The results of the QED corrections, obtained with all five binding potentials for both
Si11+ and Ca17+ ions, are provided in Table . We use the results of Refs. (Yerokhin
et al., 2020; Yerokhin et al., 2021) for the Coulomb potential; the values are in the
second column. The results of this investigation are shown in the third through
sixth columns. Our total values obtained with various screening potentials are close
to each other and overlap within their uncertainties, as shown in this Table. The
numerical error in �g(2)QED-me and the estimation of higher-order effects �g(3+)

QED-me,H
determine the total uncertainty. The latter is considered to be the biggest value out
of three possible estimations, as discussed above in relation to the �g(3+)

int, H. Yerokhin
et al., 2020; Yerokhin et al., 2021 assessed the uncertainty similarly, but there is still a
considerable disagreement between the Coulomb result and the total results for all
the screening potentials. The calculation of the term �g

(2)
QED-me might be the source of

this discrepancy. As shown in Table , it has a far larger contribution for the Coulomb
potential than for the screening potentials, and a little change in its value might result
in an agreement between the results.

Finally, we take the average of all the screening potentials and present our final
QED correction values: 2320.2857(17)⇥ 10

-6 for silicon and 2321.6601(17)⇥ 10
-6 for

calcium.

5.7 total results and discussions

Table 5.3 summarizes all theoretical contributions to the g factor of Li-like 28Si11+ and
40Ca17+ ions and compares them to previously reported theoretical and experimental
data. We use nuclear recoil contributions from Refs. (Shabaev et al., 2017; Shabaev
et al., 2018) in addition to the corrections �gint and �gQED calculated in this thesis.
For the ions under consideration, the nuclear polarization effect is insignificant. The
total uncertainty is still defined by the interelectronic-interaction and QED corrections,
as shown in Table 5.3. Figs. 5.3 and 5.4 depicts both the current and previously
published theoretical and experimental results from Refs. (Wagner et al., 2013; Köhler
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Coulomba CH KS DH DS
Z = 14

�g
(1)
QED 2324.0439 2323.8100 2323.8106 2323.8089 2323.8227

�g
(2)
QED-1e -3.5463 -3.5460 -3.5460 -3.5460 -3.5460

�g
(2)
QED-me -0.2460(6) -0.0074(17) -0.0087(17) -0.0064(16) -0.0216(20)

�g
(3+)
QED-1e 0.0295 0.0295 0.0295 0.0295 0.0295

�g
(3+)
QED-me,L 0.0099 -0.0003 0.0003 -0.0004 0.0009

�g
(3+)
QED-me,H 0.0000(6) 0.0000 0.0000(2) 0.0000(1) 0.0000(1)

Total 2320.2910(8) 2320.2858(17) 2320.2857(17) 2320.2856(16) 2320.2855(20)

Z = 20

�g
(1)
QED 2325.5544 2325.2019 2325.1985 2325.2025 2325.2211

�g
(2)
QED-1e -3.5490(3) -3.5484(3) -3.5484(3) -3.5484(3) -3.5485(3)

�g
(2)
QED-me -0.3675(6) -0.0220(17) -0.0199(17) -0.0228(15) -0.0438(20)

�g
(3+)
QED-1e 0.0295 0.0295 0.0295 0.0295 0.0295

�g
(3+)
QED-me,L 0.0105 -0.0003 0.0003 -0.0004 0.0010

�g
(3+)
QED-me,H 0.0000(12) 0.0000(4) 0.0000 0.0000(7) 0.0000(6)

Total 2321.6779(13) 2321.6607(18) 2321.6600(17) 2321.6604(17) 2321.6593(21)
a Yerokhin et al., 2020; Yerokhin et al., 2021.

Table 5.2: QED corrections �gQED to the ground-state g factor of of 28Si11+ and 40Ca17+ for
various starting potentials: Coulomb, core-Hartree (CH), Kohn-Sham (KS), Dirac-
Hartree (DH), and Dirac-Slater (DS), in units of 10

-6. Values for the Coulomb
potential are taken from Refs. (Yerokhin et al., 2020; Yerokhin et al., 2021).

Effects 28Si11+ 40Ca17+

Dirac value 1.998 254 753 3 1.996 426 025 3
e-e interaction 0.000 314 809 8(22) 0.000 454 291 0(24)
QED 0.002 320 285 7(17) 0.002 321 660 1(17)
Nuclear recoil 0.000 000 043 6 0.000 000 066 2

Total theory 2.000 889 892 4(28) 1.999 202 042 6(29)
2.000 889 893 7(17)a 1.999 202 052 9(27)a

2.000 889 896 3(15)b 1.999 202 042(13)d

2.000 889 894 4(34)c

Experiment 2.000 889 888 45(14)c 1.999 202 040 5(11)d

2.000 889 888 4(19)e

a Yerokhin et al., 2021; b Yerokhin et al., 2020; c Glazov et al., 2019a;
d Köhler et al., 2016; e Wagner et al., 2013.

Table 5.3: Theoretical contributions to the ground-state g factor of Li-like 28Si11+ and
40Ca17+ ions. Total theoretical and experimental values are compared. The
numbers in parentheses indicate the uncertainty of the last digit(s). All figures are
significant unless an uncertainty is specified.
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Wagner et al., 2013

Glazov et al., 2019

Glazov et al., 2019

Yerokhin et al., 2020

Yerokhin et al., 2021

This work

-2 0 2 4 6 8 ⇥10�9

28Si11+

g � gexp

Figure 5.3: Theoretical (squares) and experimental (circles) g-factor values for Li-like silicon
reported in this and previously published works.

Köhler et al., 2016

Köhler et al., 2016

Yerokhin et al., 2021

This work

-2 0 2 4 6 8 10 12 14 ⇥10�9

40Ca17+

g � gexp

Figure 5.4: Theoretical (squares) and experimental (circles) g-factor values for Li-like calcium
reported in this and previously published works.

et al., 2016; Glazov et al., 2019a; Yerokhin et al., 2020; Yerokhin et al., 2021). When
compared to Glazov et al., 2019a, the silicon result is more precise and closer to the
experimental value. When compared to Yerokhin et al., 2021, the results agree within
the stated uncertainty for 28Si11+, however there is a 2.6� discrepancy for 40Ca17+. We
should emphasize that the individual contributions, �gint and �gQED, disagree even
stronger. These discrepancies, however, partially cancel each other out. Yerokhin
et al., 2021 results for silicon and calcium deviate by 3.1� and 4.2�, respectively, from
the experimental values. Meanwhile, our results are far closer to the measurements:
1.4� and 0.6� deviance, respectively. We believe that the discrepancies identified
by Yerokhin et al., 2021 are thought to be attributable to an underestimation of the
interelectronic-interaction contribution’s uncertainty, as well as a probable problem
with their computation of the screened QED term.





6
C O N C L U S I O N S A N D O U T L O O K

We considered the many-electron effects on the hyperfine splitting and g factor
of lithiumlike ions in this dissertation. The investigations were performed within
the bound-state QED framework. Therefore, first, we laid the foundation of the
bound-state QED theory. In Chap. 2, we considered free electron-positron and
electromagnetic fields in the presence of the background field of the nucleus.

Then in Chap. 3 we described the QED perturbation theory. To do so, we
constructed the time-evolution operator in Sec. 3.2 and presented its Dyson series.
In the next Sec. 3.3 we defined the central object of the quantum field theory, the S-
matrix. We described the formalism that Gell-Mann, Low, and Sucher first introduced
for bound-stated QED perturbation theory, the adiabatic S-matrix approach. And
we concluded this chapter by formulating the two-time Green’s function formalism
which was used in the current dissertation for computations of the QED corrections
to the hyperfine splitting and g factor of few-electron ions.

In Chaps. 4 and 5 we investigated the interaction of the bound electron with a
magnetic field. Thus, Chap. 4 is devoted to the ground-state hyperfine splitting
in lithiumlike ions. In this chapter, we evaluated the interelectronic-interaction
contribution to the ground-state hyperfine splitting in Li-like ions for a wide range of
nuclear charge numbers. The contributions due to the one- and two-photon-exchange
corrections were treated within the framework of the extended Furry picture using a
rigorous QED approach. The higher-order interelectronic-interaction contributions
were taken into account using the recursive perturbation theory. As a result, the
accuracy of the interelectronic-interaction corrections to the ground-state hyperfine
splitting in Li-like ions in the Z = 7- 82 range has been significantly improved. These
calculations are also necessary for determining the specific difference between H- and
Li-like ions, which can be used for high-precision tests of the bound-state QED in a
strong nuclear field. As a future task, one can evaluate the screened QED corrections
to the hfs in Li-like ions for a wide range of nuclear charge Z to push forward the
test of QED with hfs. These findings, when combined with the current rigorous
calculations of the interelectronic-interaction correction, would allow one to construct

75
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the specific differences, where the QED effects could be tested via comparison with
the experiment.

In Chap. 5 we considered bound-electron g factor of lithiumlike ions. The bound-
electron g factor is a physical quantity of great fundamental interest that can be
precisely measured and calculated. Many fascinating ideas have been proposed
on its basis, such as determining the electron mass and the fine structure constant,
investigating nuclear properties, and searching for effects beyond the Standard Model.
To realize these ideas, one must first ensure that the QED theory’s predictions are
correct. Presently, a large discrepancy between theory and experiment exists in the
cases of lithiumlike silicon and calcium [D. A. Glazov et al., Phys. Rev. Lett. 123,
173001 (2019); V. A. Yerokhin et al., Phys. Rev. A 102, 022815 (2020); V. A. Yerokhin
et al., Phys. Rev. A 104, 022814 (2021)]. In this thesis, we not only improved the
theoretical value of the g factor but also explained the reasons for the discrepancy
between theory and experiment. As a result, our new theoretical values are much
closer to the experiment: the difference is just 1.4� and 0.6� for silicon and calcium,
respectively.

Quantitatively, in comparison to [D. A. Glazov et al., Phys. Rev. Lett. 123, 173001
(2019)], we have reduced the numerical uncertainty of the two-photon exchange
contribution by an order of magnitude. The screened QED correction has been
calculated rigorously for different screening potentials, without using extrapolation
from high Z as was done in 2019. As a result, we have significantly improved the
accuracy of the higher-order contributions. Moreover, we have presented two-fold
improvement for calcium in comparison to [F. Köhler et al., Nat. Commun. 7, 10246
(2016)].

As a next step, we propose increasing the accuracy of the total theoretical value
of the g factor of lithiumlike silicon and attempting to reach or at least come closer
to experimental accuracy. To do so one should rigorously evaluate many-electron
QED contributions to the g factor: two-loop many-electron diagrams, particularly
the three-photon exchange and the two-photon exchange with a self-energy loop.
First and foremost, this can be used to resolve the 1.4� discrepancy between theory
and experiment. Furthermore, the current experimental value has the potential to
validate this nontrivial many-electron QED contribution on a few percent level.
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7
A P P E N D I X

In Appendix we provide the expressions for the two-photon exchange correction
X
(2)
a to the hyperfine splitting of lithiumlike ions, see Eq. (4.31). We note that via

changing the multiplicative factor Ga to - 2

eBma
and Tz to V

magn, in formulas given
below, one can get the corresponding contributions for the case of bound-electron g

factor

X
(2)
a �!

Tz!Vmagn

Ga!- 2
eBma

�g
(2)
int . (7.1)

Here operator Tz is z component of operator T (4.2), Vmagn is defined by Eq. (5.1),
and Ga is given by Eq. (4.9).

7.1 three-electron contribution X
(2)
3el

The irreducible parts of the three-electron contribution X
(2)
3el, see Fig. 4.2, is given by

the following expression

X
(2)
3el = X

(2)
3el,A +X

(2)
3el,B +X

(2)
3el,C +X

(2)
3el,D, (7.2)

where

X
(2)
3el,A = 2Ga
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X
(2)
3el,C = Ga

X

b1,b2

X

P,Q

(-1)P+Q
X

n1,n2

0

�
hPb2Pa|I(�Pb2b2

)|b2n1ihn1|V
magn

|n2ihn2b1|I(�b1Qb1
)|QaQb1i

("a - "n1)("a - "n2)

+ 2
hPb2Pb1|I(�Pb2b2

)|b2n1ihn1|V
magn

|n2ihn2a|I(�aQa)|Qb1Qai
("b1 - "n1)("b1 - "n2)

+
hPaPb1|I(�Pab2

)|b2n1ihn1|V
magn

|n2ihn2b2|I(�b2Qb1
)|QaQb1i

("a + "b1 - "b2 - "n1)("a + "b1 - "b2 - "n2)

+
1

2

hPb2Pb1|I(�Pb2a
)|an1ihn1|V

magn
|n2ihn2a|I(�aQb1

)|Qb2Qb1i
("b1 + "b2 - "a - "n1)("b1 + "b2 - "a - "n2)

✏

,(7.5)

X
(2)
3el,D = 2Ga

X

b1,b2

X

P,Q

(-1)P+Q
X

n

0
�
hPa⇠Pb2 |I(�Paa)|anihnb1|I(�b1Qb1

)|Qb2Qb1i
"b2 - "n

+
hPb2⇠Pa|I(�Pb2b2

)|b2nihnb1|I(�b1Qb1
)|QaQb1i

"a - "n

+
hPb2⇠Pb1 |I(�Pb2b2

)|b2nihna|I(�aQa)|Qb1Qai
"b1 - "n

+
hPa⇠Pb1 |I(�Pab2

)|b2nihnb2|I(�b2Qb1
)|QaQb1i

"a + "b1 - "b2 - "n

+
1

2

hPb2⇠Pb1 |I(�Pb2a
)|anihna|I(�aQb1

)|Qb2Qb1i
"b1 + "b2 - "a - "n

✏

. (7.6)
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Hereinafter, the prime over the sum means that terms with vanishing denominators
should be omitted in the summation. Notation �n1n2 = "n1 - "n2 , "n denotes one-
electron energies, b denotes the 1s state, and the sum over b takes into account
two possible projections mb = ±1/2 of total angular momentum jb, a refers to the
valence-electron 2s state. The interelectronic-interaction operator I(!) is given by Eq.
(2.21), P and Q are permutation operators, giving rise to the sign (-1)P and (-1)Q,
respectively. The modified wave function |⇠i is defined by

|⇠ai =
"n 6="aX

n

|ni hn |Tz|ai
"a - "n

. (7.7)

7.2 two-electron contribution X
(2)
2el

The irreducible parts of the two-electron diagrams depicted in Fig. 4.3 yield

X
(2)
2el = X

(2)
2el,lad-W +X

(2)
2el,cr-W +X

(2)
2el,lad-S +X

(2)
2el,cr-S, (7.8)

where

X
(2)
2el,lad-W = Ga

X

b

X

P,Q

(-1)P+Q
i

⇡

Z1

-1
d!

⇥
X

n1,n2

0 hPaPb|I(!)|n1n2ihn1n2|I(!+�PaQa)|⇠QaQbi
("Pa +!- u"n1)("Qb -!-�PaQa - u"n2)

, (7.9)

X
(2)
2el,cr-W = Ga

X

b

X

P,Q

(-1)P+Q
i

⇡

Z1

-1
d!

⇥
X

n1,n2

0 hPan2|I(!)|n1Qbih⇠Pbn1|I(!-�PaQa)|n2Qai
("Pa -!- u"n1)("Qb -!- u"n2)

, (7.10)

X
(2)
2el,lad-S = Ga

X

b

X

P,Q

(-1)P+Q
i

2⇡

Z1

-1
d!

X

n1,n2,n3

0 i

2⇡

⇥
⇥
hPaPb|I(!)|n1n2ihn2|Tz|n3ihn1n3|I(!+�PaQa)|QaQbi

⇤

⇥
⇥
("Pa +!- u"n1)("Qb -!-�PaQa - u"n2)

⇥ ("Qb -!-�PaQa - u"n3)
⇤-1 , (7.11)
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X
(2)
2el,cr-S = Ga

X

b

X

P,Q

(-1)P+Q

Z
d!

X

n1,n2,n3

0 i

2⇡

⇥
hPan2|I(!)|n1Qbihn3|Tz|n2ihPbn1|I(!-�PaQa)|n3Qai
("Pa -!- u"n1)("Qb -!- u"n2)("Qb -!- u"n3)

, (7.12)

where the prime on the sums indicates that in the summation we omit the reducible
and infrared-divergent terms, namely, those with "n1 + "n2 = "a + "b in the ladder-W
diagrams, with "n1 = "Pa, "n2 = "Qb in the direct parts of the cross-W diagrams, with
"n1 = "n2 = "a, "b in the exchange parts of the cross-W diagrams, with "n1 + "n2 =

"a+"b and "n1 +"n3 = "a+"b and "n2 = "n3 = "Qb-�PaQa in the ladder-S diagrams,
with "n1 = "Pa, "n2 = "Qb and "n1 = "Pa, "n3 = "Qb and "n2 = "n3 = "Qb in the direct
parts of the cross-S diagrams, with "n1 = "n2 = "a, "b and "n1 = "n3 = "a, "b and
"n2 = "n3 = "a, "b in the exchange parts of the cross-S diagrams. Here, u = 1- i�,
� > 0 keeps the electron propagators’ poles properly treated.

7.3 reducible contribution X
(2)
red

In turn, the reducible parts of the two-electron diagrams are given by the following
expression

X
(2)
red = X

(2)
red, E +X

(2)
red, F +X

(2)
red, G +X

(2)
red, 2-el , (7.13)

where

X
(2)
red, E = Ga

X

a1

ha1|Tz|ai
X

b1,b2

X

P

(-1)P
X

n

0
�

-
hb1a|I(0)|b1nihnb2|I(�b2Pb2

)|Pa1Pb2i
("a - "n)2

+
hab1|I(�1)|b1nihnb2|I(�b2Pb2

)|Pa1Pb2i
("a - "n)2

- 2
hab1|I 0(�1)|b1nihnb2|I(�b2Pb2

)|Pa1Pb2i
"a - "n

- 2
hb2a|I 0(�2)|a1nihnb1|I(�b1Pb1

)|Pb2Pb1i
"b2 - "n

+
hb1b2|I(�1)|a1nihna|I(�aPb2

)|Pb1Pb2i
("b1 + "b2 - "a - "n)2

+ 2
hb1b2|I 0(�1)|a1nihna|I(�aPb2

)|Pb1Pb2i
"b1 + "b2 - "a - "n

+
hb1a|I(�21)|b2nihnb2|I(�b2Pb1

)|Pa1Pb1i
("a + "b1 - "b2 - "n)2

-
hab1|I(�2)|b2nihnb2|I(�b2Pb1

)|Pa1Pb1i
("a + "b1 - "b2 - "n)2

+ 2
hab1|I 0(�2)|b2nihnb2|I(�b2Pb1

)|Pa1Pb1i
"a + "b1 - "b2 - "n

✏

+ Ga

X

b1,b2,b3

hb2|Tz|b3i
X

P

(-1)P
X

n

0
�

-2
hb1b3|I(0)|b1nihna|I(�aPa)|Pb2Pai

("b2 - "n)2

+ 2
hb3b1|I(�21)|b1nihna|I(�aPa)|Pb2Pai

("b2 - "n)2
+ 2

hb3a|I 0(�2)|anihnb1|I(�b1Pb1
)|Pb2Pb1i

"b2 - "n
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+ 2
hab3|I 0(�2)|b2nihnb1|I(�b1Pb1

)|PaPb1i
"a - "n

-
hb1b3|I(�1)|anihna|I(�aPb2

)|Pb1Pb2i
("b1 + "b2 - "a - "n)2

+
hb3b1|I(�2)|anihna|I(�aPb2

)|Pb1Pb2i
("b1 + "b2 - "a - "n)2

+ 2
hb3b1|I 0(�2)|anihna|I(�aPb2

)|Pb1Pb2i
"b1 + "b2 - "a - "n

+
hb3a|I(�21)|b1nihnb1|I(�b1Pb2

)|PaPb2i
("a + "b2 - "b1 - "n)2

-
hab3|I(�1)|b1nihnb1|I(�b1Pb2

)|PaPb2i
("a + "b2 - "b1 - "n)2

-
hb1a|I(�21)|b2nihnb3|I(�b2Pb1

)|PaPb1i
("a + "b1 - "b2 - "n)2

+
hab1|I(�2)|b2nihnb3|I(�b2Pb1

)|PaPb1i
("a + "b1 - "b2 - "n)2

- 2
hab1|I 0(�2)|b2nihnb3|I(�b2Pb1

)|PaPb1i
"a + "b1 - "b2 - "n

✏

. (7.14)

Hereinafter a1 denotes the 2s state, the sum over a1 takes into account two possible
projections ma1 = ±1/2 of total angular momentum ja1 = ja. Similarly, b1, b2, and b3

denote 1s state, the sum over b1, b2, and b3 takes into account two possible projections
of total angular momentum jb1 = jb2 = jb3 = jb, mb1

= ±1/2, mb2
= ±1/2, and

mb3
= ±1/2, respectively.
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X
(2)
red, F = Ga

X

a1

X

b1,b2

�

-2h⇠ab1|I 0(�)|b2a1iha1b2|I(�)|b1ai- 2ha⇠b1 |I
0(�)|b2a1iha1b2|I(�)|b1ai

- 2ha1⇠
0
b2
|I(�)|b1aihab1|I(�)|b1ai+

X

P

(-1)P
h
-2hb2⇠ 0

a|I(0)|b2a1iha1b1|I(�b1Pb1
)|PaPb1i

+ 2h⇠ 0
ab2|I(�2)|b2a1iha1b1|I(�b1Pb1

)|PaPb1i- 2h⇠ab2|I 0(�2)|b2a1iha1b1|I(�b1Pb1
)|PaPb1i

- 2ha⇠b2 |I
0(�2)|b2a1iha1b1|I(�b1Pb1

)|PaPb1i+ 2hab1|I 0(�)|⇠b2a1ihab2|I(�b2Pb1
)|PaPb1i

i

+
h
- 2hb2⇠a|I(0)|b2a1i+ 2h⇠ab2|I(�2)|b2a1i+ 2ha⇠b2 |I(�2)|b2a1i- 2h⇠b2a|I(0)|b2a1i

i

⇥ ha1b1|I
0(�1)|b1ai

✏

+Ga

X

b1,b2,b3

�

-2hb2⇠ 0
b1
|I(0)|b2b3ihb3a|I(�aPa)|Pb1Pai

+ 2h⇠ 0
b1
b2|I(�21)|b2b3ihb3a|I(�aPa)|Pb1Pai

+
h
2hb2⇠b1 |I(0)|b2b3i- 2h⇠b1b2|I(�21)|b2b3i+ 2h⇠b2b1|I(0)|b2b3i

- 2hb1⇠b2 |I(�21)|b2b3i
i
hb3a|I 0(�1)|ab1i+

X

P

(-1)P
h
2hb2⇠a|I 0(�2)|ab3i

- 2ha⇠ 0
b2
|I(0)|ab3i+ 2h⇠ 0

b2
a|I(�2)|ab3i+ 2h⇠b2a|I

0(�2)|ab3i
i
hb3b1|I(�b1Pb1

)|Pb2Pb1i
✏

+ Ga

X

a1,a2

X

b1,b2

�

2hb1⇠a|I(0)|b2a1i- 2h⇠ab1|I(�)|b2a1i- 2hab1|I(�)|⇠b2a1i

- 2ha⇠b1 |I(�)|b2a1i
✏

ha1b2|I
0(�)|b1a2i

+ Ga

X

a1

X

b1,b2

X

n

0
- 2

hb1a|I(0)|b2nihn|Tz|a1iha1b2|I(�)|b1ai
("a - "n)2

+ Ga

X

a1

X

b1,b2

X

P

(-1)P
X

n

0
�

-2
hab1|I(�)|b2nihn|Tz|a1iha1b2|I(�aPa)|PaPb1i

("a - "n)2

+ 2
hab1|I 0(�)|b2nihn|Tz|a1iha1b2|I(�aPa)|PaPb1i

"a - "n

+ 2
hab1|I 0(�)|b2a1iha1|Tz|nihnb2|I(�b2Pb1

)|PaPb1i
"a - "n

✏

, (7.15)

where

I
00(!) = d

2
I(!)/d!2 , |⇠ai =

X

n

0 |nihn|Tz|ai
"a - "n

, |⇠
0
ai =

@

@"a
|⇠ai . (7.16)
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X
(2)
red, G =

1

2
Ga

X

a1

X

b1,b2

⌦
hb2|Tz|b2ihab1|I 00(�)|b2a1iha1b2|I(�)|b1ai

+ 2hb2|Tz|b2ihab1|I 0(�)|b2a1iha1b2|I
0(�)|b1ai

+ hb2|Tz|b2ihab1|I(�)|b2a1iha1b2|I
00(�)|b1ai

- hb2|Tz|b2ihb1a|I(0)|b2a1iha1b2|I
00(�)|b1ai

+ ha|Tz|aihab1|I 00(�)|b2a1iha1b2|I(0)|ab1i

- ha|Tz|aihab1|I 00(�)|b2a1iha1b2|I(�)|b1ai

- 2ha|Tz|aihab1|I 0(�)|b2a1iha1b2|I
0(�)|b1ai

- ha|Tz|aihab1|I(�)|b2a1iha1b2|I
00(�)|b1ai

- hb1|Tz|b1ihb1a|I(0)|b2a1iha1b2|I
00(�)|b1ai

+ ha|Tz|aihb1a|I(0)|b2a1iha1b2|I
00(�)|b1ai

+ hb1|Tz|b1ihab1|I 00(�)|b2a1iha1b2|I(�)|b1ai

+ 2hb1|Tz|b1ihab1|I 0(�)|b2a1iha1b2|I(�)|b1ai

+ hb1|Tz|b1ihab1|I(�)|b2a1iha1b2|I
00(�)|b1ai

+ hab1|I 00(�)|b2a1iha1|Tz|a1iha1b2|I(0)|ab1i

- hab1|I 00(�)|b2a1iha1|Tz|a1iha1b2|I(�)|b1ai

- 2hab1|I 0(�)|b2a1iha1|Tz|a1iha1b2|I
0(�)|b1ai

- hab1|I(�)|b2a1iha1|Tz|a1iha1b2|I
00(�)|b1ai

+ hb1a|I(0)|b2a1iha1|Tz|a1iha1b2|I
00(�)|b1ai

↵

+ Ga

X

b1,b2

⌦
ha|Tz|aihab2|I 0(�2)|b2aihab1|I 0(�1)|b1ai

- hb2|Tz|b2ihab2|I 0(�2)|b2aihab1|I 0(�1)|b1ai

-
X

P

(-1)P
h
ha|Tz|aihab2|I 00(�2)|b2aihab1|I(�aPa)|PaPb1i

+ hb2|Tz|b2ihab2|I 00(�2)|b2aihab1|I(�aPa)|PaPb1i

+ hb2|Tz|b2ihb2b1|I 00(�21)|b2b2ihb2a|I(�b1Pb1
)|Pb1Pai

i↵

+ Ga

X

b1,b2,b3

X

P

(-1)P
⌦
ha|Tz|aihab2|I 00(�2)|b3aihb3a|I(�b2Pb2

)|Pb2Pb1i

- hb3|Tz|b3ihb3b1|I 00(�21)|b1b2ihb2a|I(�b2Pb2
)|Pb3Pai

- hb3|Tz|b3ihb3a|I 00(�2)|ab2ihb2b1|I(�b2Pb2
)|Pb3Pb1i

↵
, (7.17)

X
(2)
red, 2-el = -

i

⇡
Ga

X

b

X

n1,n2

Z1

-1
d!

hbn2|I(!)|n1bihn1⇠a|I(!+�)|an2i
("b -!- u"n1)("b -!- u"n2)
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+
i

⇡
Ga

X

b

X

n1,n2

Z1

-1
d!

hbn2|I(!)|n1bihn1a|I(!+�)|an2iha|Tz|ai
("b -!- u"n1)("b -!- u"n2)

⇥
"

1

"b -!- u"n1

+
1

"b -!- u"n2

#

+
i

⇡
Ga

X

b

X

n1,n2

Z1

-1
d!

hbn2|I
0(!)|n1bihn1a|I(!+�)|an2iha|Tz|ai
("b -!- u"n1)("b -!- u"n2)

-
i

⇡
Ga

X

b

X

n1,n2,n3

Z1

-1
d!

hbn2|I(!)|n1bihn3|Tz|n2ihn1a|I(!+�)|an3i
("b -!- u"n1)("b -!- u"n2)("b -!- u"n3)

-
i

⇡
Ga

X

b

X

n1,n2

Z1

-1
d!

han2|I(!)|n1aihn1⇠b|I(!+�)|bn2i
("a +!- u"n1)("a +!- u"n2)

+
i

2⇡
Ga

X

b

X

n1,n2

Z1

-1
d!

han2|I(!)|n1aihn1b|I
0(!+�)|bn2ihb|Tz|bi

("a +!- u"n1)("a +!- u"n2)

+
i

⇡
Ga

X

b

X

n1,n2

Z1

-1
d!

hab|I(!)|n1n2ihn1n2|I(!+�)|b⇠ai
("a +!- u"n1)

2

-
i

⇡
Ga

X

b

X

n1,n2

Z1

-1
d!hab|I(!)|n1n2i

"
hn1n2|I(!+�)|bai
("a +!- u"n1)

3

-
hn1n2|I

0(!+�)|bai
("a +!- u"n1)

2

#

ha|Tz|ai

-
1

2
Ga

X

a1

X

b1,b2

⌦
hab2|I(0)|a1b1iha1b1|I

00(�)|baiha|Tz|ai

- hab2|I(�)|b1a1ihb1a1|I
00(0)|baiha|Tz|ai

↵

+
i

⇡
Ga

X

b

("n1
,"n2

) 6=("a,"b)X

n1,n2

Z1

-1
d!

"
hab|I(!)|n1n2ihn1n2|I(!+�)|bai
("a +!- u"n1)

2("b -!- u"n2)

-
hab|I(!)|n1n2ihn1n2|I

0(!+�)|bai
("a +!- u"n1)("b -!- u"n2)

#

ha|Tz|ai

+
i

⇡
Ga

X

b

("n1
,"n3

) 6=("a,"b)X

n1,n2,n3

Z1

-1
d!

hab|I(!)|n1n2ihn2|Tz|n3ihn1n3|I(!+�)|bai
("a +!- u"n1)

2("b -!- u"n3)

+
i

⇡
Ga

X

b

("n1
,"n2

) 6=("a,"b)X

n1,n2,n3

Z1

-1
d!

hab|I(!)|n1n2ihn2|Tz|n3ihn1n3|I(!+�)|bai
("a +!- u"n1)

2("b -!- u"n2)

-
i

⇡
Ga

X

b1,b2

"n 6="aX

n

Z1

-1
d!

hab2|I(!)|nb1ihb1|Tz|b1ihnb1|I(!+�)|b2ai
("a +!- u"n1)(!- i0)2

-
i

⇡
Ga

X

b

X

n1,n2,n3

Z1

-1
d!

hab|I(!)|n1n2ihn2|Tz|n3ihn1n3|I(!+�)|bai
("a +!- u"n1)

3
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+ Ga

X

a1

X

b1,b2

hab2|I(�)|b1a1iha1|Tz|a1ihb1a1|I
00(0)|b2ai

+
i

⇡
Ga

X

b

X

n1,n2

Z1

-1
d!

hab|I(!)|n2n1ihn2n1|I(!+�)|⇠bai
("b -!- u"n1)

2

+
i

2⇡
Ga

X

b

X

n1,n2

Z1

-1
d!

"
hab|I(!)|n2n1ihn2n1|I(!+�)|baihb|Tz|bi

("b -!- u"n1)
3

+
hab|I 0(!)|n2n1ihn2n1|I(!+�)|baihb|Tz|bi

("b -!- u"n1)
2

#

+
1

2
Ga

X

a1

X

b1,b2

h
hab1|I(0)|a1b2iha1b2|I

00(�)|b1aihb1|Tz|b1i

+ hab1|I(�)|b2a1ihb2a1|I
00(0)|b1aihb1|Tz|b1i

i

-
i

2⇡
Ga

X

b

("n1
,"n2

) 6=("a,"b)X

n1,n2

Z1

-1
d!

"
hab|I 0(!)|n2n1ihn2n1|I(!+�)|baihb|Tz|bi

("b -!- u"n1)("a +!- u"n2)

-
hab|I(!)|n2n1ihn2n1|I(!+�)|baihb|Tz|bi

("b -!- u"n1)("a +!- u"n2)
2

#

-
i

⇡
Ga

X

b

X

n1,n2

Z1

-1
d!

hab|I(!)|n2n1ihn2n1|I(!)|⇠abi
("a +!- u"n2)

2

-
i

⇡
Ga

X

b

("n1
,"n2

) 6=("a,"b)X

n1,n2

Z1

-1
d!

hab|I(!)|n2n1ihn2n1|I(!)|abiha|Tz|ai
("b -!- u"n1)("a +!- u"n2)
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Here, the ("n1 , "n2) 6= ("a, "b) means that terms with energies "n1 + "n2 = "a + "b

should be omitted in the summation.

7.4 counterterm contribution X
(2)
ct

The formal expressions for the contribution of the counterterm diagrams shown in
Fig. 4.4 are given by
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ct-2, (7.19)
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corresponds to the five diagrams in the first line of Fig. 4.4, and

X
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ct-2 = Ga

⇣
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scr
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⌘
(7.21)

stays for the two diagrams in second line of Fig. 4.4. The employed functions are
defined by Eq. (4.28).
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