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1 Introduction

It is one of the elementary statements classical electrodynamics issue that accelerated charges
emit radiation. One of the most famous examples is of course the Hertzian dipole from which
Heinrich Rudolf Hertz discovered the existence of electromagnetic waves. One now expects
also elementary particles emitting radiation when they are accelerated or decelerated. This
effect was first used to generate X-rays by focusing an electron beam on an appropiate cathode
material. The kinetic energy the electrons lose by hitting the surface of the cathode is emitted
in form of X-rays. At least it was Arnold Sommerfeld in accordance with Wilhelm Conrad
Röntgen who called this process bremsstrahlung.

Particularly there are two bremsstrahlung processes to be taken into account when con-
sidering the interaction of charged particles and atoms or ions. First of all there is so called
ordinary or electron-atom bremsstrahlung. This process is responsible for the effects observed
in the middle of the 20th century. As one can see in Fig. 1.1 ordinary bremsstrahlung is emitted
by an electron scattered on the (screened) potential of an atom or ion.

Polarisation bremsstrahlung is caused by the atomic structure deformed by the passing elec-
tron. Thus a dipole moment is induced. Since this so called "polarisation" is time dependent
it also emits radiation as illustrated in Fig. 1.2.

But why is it important to understand at least the process of electron-atom bremsstrahlung
as thoroughly as possible? There are several answers. The properties of bremsstrahlung
radiation strongly depend on the incident electron. In this context radiation measurements
can be used for electron beam diagnostics for example to tell wether the incident electron
is polarised and if so in which direction. This knowledge is for instance important for any
experiment requiring polarised electron beams. It turned out that bremsstrahlung could also
be a useful tool for plasma diagnostics. An atomic plasma includes free electrons as well as
atomic nuclei. When electrons are scattered on the bare nuclei one can draw conclusions

Figure 1.1: Principle of ordinary bremsstrahlung.
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1 Introduction

Figure 1.2: Principle of polarisation bremsstrahlung.

according to the plasma properties from observing the bremsstrahlung radiation emitted
during that process. Since bremsstrahlung is emitted during every process including free
electrons and atoms it often is a background effect which increases the noise level of the
recorded data. That means the better the knowledge about the background effect is, in this
case bremsstrahlung, the better one can distinguish the investigated effect from the rest of the
data.

As the applications are so manifold, it is essential to have easy access to all bremsstrahlung
radiation properties for any experimental setup. The methods usually used for bremsstrahlung
calculations are rather pedestrian and inflexible. This means that in most cases new calcula-
tions are necessary for different observation angles as well as for different electron energies.
The aim of this analysis is now to show up a way to provide this data in a way which makes it
utilisable for as many applications as possible. To meet these demands the calculations have
to be fast, the parameters may be chosen from a wide range and the data should be calculated
with the same precision modern experimental measurements can achieve.

This work treats the short wavelength limit of electron-atom bremsstrahlung which means
the electron transfers all its energy to the photon. Unless not defined otherwise we assume
that the energy of the emitted photon equals the energy of the incoming electron.

All Expressions in this work are given in atomic units (e = me = }= 1).
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2 Dirac Wavefunctions and Matrix
Elements

For the description of the bremsstrahlung process, solutions of the Dirac equation are used
to describe the electrons. This way was chosen since a fully relativistic treatment of the
electrons is necessary to cover a wide range of electron energies. For example an electron
energy of 100keV corresponds to a velocity of ve = 0.63c wich is already highly relativistic. In
experiments energies of several hundred keV are more and more common during the continual
growth of high energy physics. It is obvious that a relativistic treatment of the bremsstrahlung
process is inevitable to describe the phenomena observed in modern physics.

2.1 Mathematical Preliminaries

This section covers not all mathemathics needed for the derivations done in this work. It
should emphasise some important relations which are denotative for central steps.

2.1.1 Wigner D-function

The Wigner-D-functions performs a rotation of a state vector in the Hilbert space around the
three Euler angles

(
α,β,γ

)
. We label the rotated state vector with a tilde:

�| j m〉 =∑
m′

D j
mm′(α,β,γ) | j m′〉 (2.1.1)

Important properties of this function can be found e.g. in Ref. [1]:

(
D j1

m1m′
1
⊗D j2

m2m′
2

)
(α,β,γ) = ∑

j mm′
( j1m1 j2m2| j m)( j1m′

1 j2m′
2| j m′)D j

mm′(α,β,γ) (2.1.2a)

D j∗
mm′(α,β,γ) = (−1)m−m′

D j
−m−m′(α,β,γ) (2.1.2b)

D j
m0(α,β,γ) =

√
4π

2l +1
Y∗

lm(β,α) = (−1)m

√
4π

2l +1
Yl−m(β,α) (2.1.2c)

2.1.2 Wigner-Eckart Theorem

The Wigner-Eckart theorem allows us to split any geometrical dependency from a matrix
element. The result is the so called reduced matrix element which only depends on absolute
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2 Dirac Wavefunctions and Matrix Elements

values not on projections. In a simplified form it reads with an arbitrary set of tensor operators
ALM :

〈α j ′m′|ALM |α j m〉 = ( j mLM | j ′m′)√
2 j +1

〈α j ′||AL||α j 〉 (2.1.3)

In this representation the Wigner-Eckart theorem can be found in Ref. [2].

2.2 Dirac Equation

We are looking for the wavefunction of an relativistic electron in a stationary Coulomb field.
Therefor we need to solve the Dirac eaquation for a single electron including a Coloumb
potential

(
−iα̂grad + β̂− Z

r

)
|ψ(r )〉 = E |ψ(r )〉 (2.2.1)

where α̂ is related to the Dirac matrices like α̂i = β̂−1γ̂i and γ̂0 = β̂ and Z is the nuclear charge.
In Equation (2.2.1) we neglected the size of the nucleus as well as any Breit or Hyperfine
corrections. The eigenvalues of the Dirac Hamiltonian show up as shown in Fig. 2.1.

−1

1

0

E

Figure 2.1: Illustration of the Dirac Hamiltonian eigenvalues.

From the Hamiltonian being Hermitician one can conclude that the α̂-matrices as well as β̂
have to be Hermitician too. We stipulate that the Dirac wavefunctions are also solutions of
the Klein-Gordon equation. This yields additional relations between the α̂ and β̂ matrices.
These equations can only be satisfyed by matrices having the minimal dimension 4×4 what
fits nicely into a relativistic theory which at least requires four dimensional state vectors.

12



2.3 Dirac Wavefunctions

2.3 Dirac Wavefunctions

The Dirac equation does not allow a decomposition of the wavefunction in the form:

ψnlml sms (r ) = Rnl (r ) ·Yl ml (ϑϕ) ·χsms (σ) (2.3.1)

This is because of the spin-orbit-coupling in the relativistic regime. Instead we can decompose
the wavefunction into a radial and a spin-angular part since the total angular momentum
operator Ĵ = L̂ + Ŝ commutes with the Dirac Hamiltonian. Usually Dirac wavefunctions are
written as a two-spinor with two-spinors as its components

ψεκm j (r ) =
(

gεκ(r )Ωκm j (r̂ )
i fεκ(r )Ω−κm j (r̂ )

)
(2.3.2)

where ε is the energy of the particle, κ the relativistic quantum number and m j the projection
of the total angular momentum on the quantisation axis. The functions gεκ(r ) and fεκ(r )
describe the radial properties of the wavefunction, whileΩ±κm j (r̂ ) contains its angular and
spin dependencies. The angular functions are a tensor product of the spin wavefunction and
the spherical harmonic which describes the angular behaviour.

Ω±κm j (r̂ ) =
∑

ml ms

(lml
1
2 ms | j m j )Yl ml (r̂ )χsms (2.3.3)

Since the spin wavefunction is a two-spinor itself the Dirac wavefunction is a four-spinor
as claimed before. To obtain expressions for the radial components we follow Ref. [3]. By
multiplying Eq. (2.3.2) with r , substituting F (r ) = r f (r ) and G(r ) = r g (r ) and inserting it into
Eq. (2.2.1) one gets two coupled differential equations for the radial wavefunctions:

(
d

dr
− κ

r

)
Fεκ(r ) =

(
−E + Z

r
+1

)
Gεκ(r ) (2.3.4a)(

d

dr
− κ

r

)
Gεκ(r ) =

(
E − Z

r
+1

)
Fεκ(r ) (2.3.4b)

The analytical solutions of these equations consist basically of the F1 1-Confluent Hypergeo-
metric Function:

gεκ(r ) = Nκ

p
ε+1

(
2pr

)s−1ℜ
(

e−i(pr+δκ)(s + iη) F1 1(s +1+ iη,2s +1,2ipr )
)

(2.3.5a)

fεκ(r ) =−Nκ

p
ε−1

(
2pr

)s−1ℑ
(

e−i(pr+δκ)(s + iη) F1 1(s +1+ iη,2s +1,2ipr )
)

(2.3.5b)

Whith the electron momentum p, the phase δκ and the fine-structure constant α:

ζ=α ·Z s =
√
κ2 −ζ2 η= ζε

κ

p =
√
ε2 −1 e iδκ =

√
−κ+ iη/ε

s + iη
Nκ = 2

√
p

π

∣∣Γ(s + iη
∣∣

Γ(2s +1)
e

1
2πη

The wavefunction shown in Eq. (2.3.2) describes an electron in the continuum with a well
defined total angular momentum and its projection.
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2 Dirac Wavefunctions and Matrix Elements

However the experimentally accessible properties of electrons in the continuum are the
asymptotic momentum and the projection of its spin on the quantisation axis. While the
Schrödinger equation allows us to find closed expressions for a continuum electron with
well defined asymptotic momentum by seperating it in parabolic coordinates we cannot find
such expressions in the relativistic regime. Instead of a relativistic electron with well defined
asymptotic momentum it is possible to perform an expansion in a plane wave and incoming
and outgoing spherical waves whith well defined angular momentum and projection as shown
in Eq. (2.3.2). This method also keeps the seperation into a radial and a spin-angular part.
These incoming (+) and outgoing (−) waves can be derived directly from the Dirac equation.
According to Ref. [3] they read:

ψ(±)
εkz ms

(r ) =
√

π

2εk

∑
κ

il
√

4π(2l +1)(l 0 1
2 ms | j ms) e±i∆κψεκm j (r ) (2.3.6)

Here k = kz , k = |k | and the Coloumb phase shift ∆κ = δκ−arg
(
Γ

(
s + iη

))− 1
2πs. In Eq. (2.3.6)

we considered the z-direction as the direction of the electron momentum as well as the
quantisation axis. For the quantisation axis not coinciding with the direction of the electron
momentum we keep the z-axis as the quantisation axis and rotate the space part of the
wavefunction. Thus we obtain:

ψ(±)
εkms

(r ) = 4π

√
π

2εk

∑
κm j

il
√

4π(2l +1)(l ml
1
2 ms | j ms) e±i∆κY∗

lml
(ϑϕ)ψεκm j (r ) (2.3.7)

In this case, where the quantisation axis is still the z-axis according to Eq. (2.1.2c) the spatial
rotation reduces to a spherical harmonic function. Because of the spin projection not having a
sharp value if quantisation and propagation axis are not the same this expression can only be
used if a summation over the spin projection is performed.

2.4 Photon Interaction Operator

The emission of a photon during the bremsstrahlung process corresponds to a coupling to an
external electromagnetic field within the Hamilton formalism. The interaction operator is:

Ĥint = α̂ · A (2.4.1)

Here A is the vectorpotential. With div A = 0 (Coloumb gauge) one obtains

A(r ) = u∗
λ eikr (2.4.2)

where uλ is the unit polarisation and k the wave vector with the helicity λ=±1 for either left
or right circular polarisation (see Ref. [2]). Throughout this work we define:

u±1 = 1p
2

(ux ±uy ) (2.4.3)

In order to get an expression for an arbitrary direction of the emitted photon we follow Rose [2]
and perform a multipole or Rayleigh expansion. After that the vector potential can be written
as follows:

A(r ) =p
2π

∑
LM p

iL (2L+1)
1
2 DL

Mλ(ϑϕ) (iλ)p a(p)
LM (r ) (2.4.4)
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2.5 Reduced Matrix Elements

The Wigner rotation matrix DL
Mλ

was introduced in Sec. 2.1. The field vectors, indexed by
p ∈ {0,1} can be found as

a(0)
LM (r ) = jL(kr )T M

LL(ϑϕ) (2.4.5a)

a(1)
LM (r ) = jL−1(kr )

(
L+1

2L+1

) 1
2

T M
LL−1(ϑϕ)− jL+1(kr )(

L

2L+1
)

1
2 T M

LL+1(ϑϕ) (2.4.5b)

where jL are spherical Bessel functions and T M
LL vector spherical harmonics. We now have an

expression for the interaction operator describing a photon emitted in an arbitrary direction
which is additionaly separated into an angular and a radial part.

2.5 Reduced Matrix Elements

Using the results derived in the previous sections, we can now apply first order time-dependent
pertubation theory. In this case the transition matrix is using (2.1.3):

〈p i msi |α̂uλ eikr |p f ms f 〉 =8
p

2π2
∑
κiκ f

∑
µiµ f

∑
LM

[L, l ]
1
2

[ j ]
1
2

iL+l f −li e
−i(∆κi +∆κ f

)

× (li 0 1
2 msi | jiµi )(l f ml f

1
2 ms f | j f µ f )( j f µ f LM | jiµi )

×DL
MλY∗

l f ml f

∑
p

(iλ)p 〈εiκi ||α̂a(p)
L ||ε f κ f 〉

(2.5.1)

Here all the parameters belonging to the initial state are indexed with an i , the final state
parameters with an f . Also we introduce the symbol [·] as:

[ j1, j2, . . . , jn] = (2 j1 +1)(2 j2 +1) . . . (2 jn +1) (2.5.2)

We now pay attention to the reduced matrix elements 〈εiκi ||α̂a(p)
L ||ε f κ f 〉. Since we were able

to split all our building blocks into an angular and a radial part we should use this opportunity
to do the same with the reduced matrix element. Using (2.3.2), (2.4.4) and (2.4.5) one arrives
at

〈εiκi ||α̂a(p)
L ||ε f κ f 〉 =i

(
〈gεiκi |jL| fε f κ f 〉〈εiκi ||[YΛ⊗σ]L||ε f −κ f 〉

−〈 fεiκi |jL|gε f κ f 〉〈εi −κi ||[YΛ⊗σ]L||ε f κ f 〉
)

+λ
(

L+1

2L+1

) 1
2 (
〈 fεiκi |jL−1|gε f κ f 〉〈εi −κi ||[YΛ⊗σ]L−1||ε f κ f 〉

− 〈gεiκi |jL−1| fε f κ f 〉〈εiκi ||[YΛ⊗σ]L−1||ε f −κ f 〉
)

+λ
(

L

2L+1

) 1
2 (
〈 fεiκi |jL+1|gε f κ f 〉〈εi −κi ||[YΛ⊗σ]L+1||ε f κ f 〉

− 〈gεiκi |jL+1| fε f κ f 〉〈εiκi ||[YΛ⊗σ]L+1||ε f −κ f 〉
)

(2.5.3)
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2 Dirac Wavefunctions and Matrix Elements

where σ = σi e i is the vector with the Pauli matrices as its components. This reduces the
integration to calculate the reduced matrix element from a threefold to one single and one
twofold integral. The twofold integral over the azimutal and the polar angle can be solved
analytically and is well known. In Ref. [1] we find:

〈εi ±κi ||[YΛ⊗σ]L||ε f ∓κ f 〉 =
√

3

2π
(−1)l f [ ji , j f , li , l f ,L]

1
2 (li 0l f 0|Λ0)


ji li

1/2

j f l f
1/2

L Λ 1

 (2.5.4)

The radial integrals 〈gεiκi |jL| fε f κ f 〉 and 〈gεiκi |jL| fε f κ f 〉 have to be solved numerically.

2.6 Radial Integrals

As pointed out in the last section the solution of the radial integrals has to be found numerically.
One way to do this is discussed in this section.

The radial integrals are:

〈gεiκi |jL| fε f κ f 〉 =
∫ ∞

0
dr r 2gεiκi (r )jL(kr ) fε f κ f (r ) =

∫ ∞

0
dr Ig f (2.6.1a)

〈 fεiκi |jL|gε f κ f 〉 =
∫ ∞

0
dr r 2 fεiκi (r )jL(kr )gε f κ f (r ) =

∫ ∞

0
dr I f g (2.6.1b)

These integrals cannot be calculated by integrating along the real axis. The integrands are
highly oszillating and slowly decreasing for large values of r which is shown in Fig. 2.2. Hence
the integration is performed by rotating the integration contour in the complex plane. In
order to do this we express the radial functions in terms of Whittaker functions of the first kind
Mab(z):

gεκ(r ) = Nκ

p
ε+1

(
2pr

)− 3
2 ℜ

(
ei(δκ−π

2 (s+ 1
2 )) (s + iη

)
M− 1

2−iη,s(2ipr )
)

(2.6.2a)

fεκ(r ) =−Nκ

p
ε−1

(
2pr

)− 3
2 ℑ

(
ei(δκ−π

2 (s+ 1
2 )) (s + iη

)
M− 1

2−iη,s(2ipr )
)

(2.6.2b)

We can now express Eq. (2.6.1) in terms of integrals of the form:

Iα1γ1α2γ2L(p1, p2,k) =
∫ ∞

0
dr r−1Mα1γ1 (2ip1r )Mα2γ2 (2ip2r )jL(kr ) (2.6.3)

If we now express the Whittaker functions of the first kind like

Mαγ(z) = Γ(2γ+1)

Γ(γ−α+ 1
2 )

eiπsαW−αγ(−z)+ Γ(2γ+1)

Γ(γ+α+ 1
2 )

eiπs(α−γ− 1
2 )Wαγ(z) (2.6.4)

where s = 1 if ℑ(z) < 0 and s = −1 otherwise and Wαγ(z) are the Whittaker functions of the
second kind (see e.g. Ref. [4]). Once this is done the asymptotic behaviour of the Whittaker
function shows us that we can split the integral into two parts, one exponentially decreasing
in the upper and one exponentially decreasing in the lower half of the complex plane.
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2.6 Radial Integrals
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Figure 2.2: Radial integrands Ig f (r ) (left) and I f g (r ) (right) calculated for a nuclear charge of
Z = 79, κi = κ f = 1, εi = 1keV and ε f = 1eV.

To evade irregularities for small values of r the integration is performed in two steps. First
along the real axis up to a certain value R and for r > R along the rotated integration contour in
the complex plane. This method was first described by Vincent and Fortune [5]. An application
to the bremsstrahlung process was done by Yerokhin and Surzhykov [6].
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3 Density Matrix for ordinary
Bremsstrahlung

Once a system is not closed one cannot describe it using a single Hilbert space vector. Instead
the statistical or density operator is used. It describes a mixed state performing a weighted
projection P̂n on a complete basis set |ψn〉 of the Hilbert space:

%̂=∑
n
%n |ψn〉〈ψn | =

∑
n
%nP̂n (3.0.1)

By choosing a certain representation |ξ〉 of the eigenstates one gets the density matrix which
reads:

Mξξ′ = 〈ξ|%̂|ξ′〉 (3.0.2)

This matrix contains all information about the system. For this reason the statistical operator
is often seen as a generalisation of the state vector.

3.1 Application to Bremsstrahlung

To describe the bremsstrahlung process we set our frame to be the rest frame of the atom.
The z-axis is set along the asymptotic momentum of the incident electron. The plane defined
by p i and the momentum of the emitted photon k is chosen to be the xz-plane (also called
reaction plane).

We can get the final state density matrix, the density matrix after the scattering process,
from the initial state by a multiplication with the matrix elements (2.5.1). As the scattered
electron is not observed we perform an integration over the scattering angle and sum over the
spin projection of the scattered electron (see also Sec. 2.3):

〈kλ|%̂ f |kλ′〉 =
∫

dΩ f

∑
msi m′

si
ms f

〈pi msi |%̂i |pi m′
si
〉

×〈pi msi |α̂uλ eikr |p f ms f 〉
∗ 〈pi m′

si
|α̂uλ′ eikr |p f ms f 〉

(3.1.1)

Here we chose the representation of the finals state to be |kλ〉 with the photon momentum k
and the helicity λ=±1. The initial state is described by the asymptotic momentum and the
spin of the incident electron. As one can find in Ref. [1] the initial state density matrix can be
expressed in terms of the statistical tensor %(i )

kq

〈pi msi |%̂i |pi m′
si
〉 =∑

kq
(−1)

1
2−m′

si ( 1
2 msi

1
2 m′

si
|kq)%(i )

kq (3.1.2)
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3 Density Matrix for ordinary Bremsstrahlung

where we can express %(i )
kq in terms of the components of the polarisation vector of the incom-

ing electron

%(i )
00 = 1p

2
%(i )

10 = 1p
2

Pz %(i )
1±1 =∓ 1p

2
(Px ∓ iPy ) (3.1.3)

where P = (Px ,Py ,Pz) is the polarisation vector of the incoming electron.

Now using the results (2.5.1), (3.1.2), well known symmetry properties and summation
relations of Clebsch-Gordan coefficients which could be found e.g. in Ref. [1] one finally
obtains:

〈kλ|%̂ f |kλ′〉 =8(2π)4
∑

κiκ
′
iκ f

∑
LL′g

∑
kr s

(−1)2 ji− j f − j ′i−k+L′+L−li iL′−L+li−l ′i e
i(∆κi −∆κ′i )

×%(i )
k−sDr

st [ ji , j ′i ,L,L′, li , l ′i ,r,k]
1
2 (L−λL′λ′|r t )(li 0l ′i 0|g 0)

× (ksr − s|g 0)

{
L j f ji

j ′i r L′
}

1/2
1/2 k

j ′i ji r
l ′i li g


×∑

pp ′
(−iλ)p (−iλ′)p ′ 〈εiκi ||α̂a(p)

L ||ε f κ f 〉
∗ 〈εiκ

′
i ||α̂a(p ′)

L′ ||ε f κ f 〉

(3.1.4)

The number of summands in this formula is mainly determined by the number of partial
waves needed for the reduced matrix elements to converge up to a certain precision. All other
summation limits cannot be chosen arbitrary because the Clebsch-Gordan coefficients vanish
if the triangle conditions are not satisfied. The only exceptions are k and s. In the general case
they are always k ∈ {0,1} and −k ≤ s ≤ k.

3.2 Convergence

The main influence on the convergence behaviour of the reduced matrix element is the energy
of the electrons (incident and scattered). The partial waves expansion converges very fast
for low electron energies. For higher energies the convergence slows down and more partial
waves are needed to achieve the desired precision.

20



3.2 Convergence

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

n=Maximum value of Κi

M
-

1-
1

Hn
L�M

-
1-

1

Figure 3.1: Normalised density matrix element λ= λ′ =−1 for different energies (blue: εi =
100keV, red: εi = 80keV) and ε f = 1eV always while the observation angle is fixed
to 60°.

Fig. 3.1 shows us the convergence behaviour of the M−1−1 density matrix element for 100keV
and 80keV in comparison with a fixed observation angle. Therefor the absolut values of M−1−1

were normalised to the converging point in both cases. In this example only the expansion of
the initial electron was taken into account while the energy of the scattered electron is fixed
and summation is perfomed till convergence. It is apparent that the density matrix element
converges slower in the 100keV case. The finding of this is that all calculations are more time
expensive for higher energies.
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4 Observables of Atomic
Bremsstrahlung

There are two properties of bremsstrahlung mainly observed in experiments. The angular
distribution and especially asymmetries of radiation intensity within the reaction plane are
characteristics which can easily be measured. Additionally modern experimental techniques
give us access to polarisation properties of the bremsstrahlung radiation.

4.1 Angular distribution

In this section we will derive an expression for the cross section differential in the observa-
tion angle and the photon energy. This allows us to investigate the angular properties of
bremsstrahlung radiation.

For all further derivations we normalise the trace of %̂ related to the cross section following
Tseng and Pratt [7] and Yerokhin and Surzhykov [6] as

σ(k) = k

Z 2

dσ

dk
= 2π

∫ 1

−1
d(cosϑk )

dσ

dk dΩk
= 1

32π

k2

p2
i

α

Z 2

∫ 1

−1
d(cosϑk )Tr(%̂) (4.1.1)

where k is the energy of the emitted photon, pi the absolute value of the initial electron
momentum and Ωk the solid angle of the emitted photon. The angle ϑk denotes the angle
between p i and k in the xz-plane.

This directly leads us to the double differential cross-section:

dσ

dk dΩk
= α

64π2

k2

Z 2p2
i

Tr(%̂ f ) (4.1.2)

4.1.1 Parametrisation of the Double Differential Cross-Section

In order to find a more convenient expression we make use of (3.1.4) and (2.1.2c). This allows
us to express the trace of the density matrix as a weighted sum of spherical harmonics

Tr(%̂ f ) = 256π
9
2
∑
r s

C(A)
r s Yr,−s (4.1.3)
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4 Observables of Atomic Bremsstrahlung

where the angular coefficients C(A)
r s are defined by:

C(A)
r s = ∑

κiκ
′
iκ f

∑
LL′g

∑
kpp ′

(−1)2 ji−2 j f − j ′i−k+L+L′−li+s
(
(−1)p + (−1)p ′+L+L′−r

)
iL′−L+li−l ′i+p+p ′

× e
i(∆κi −∆κ′i )

%(i )
k,−s[ ji , j ′i ,L,L′, li , l ′i ,k]

1
2 (li 0l ′i 0|g 0)(ksr − s|g 0)(L−1L′1|r 0)

×
{

L j f ji

j ′i r L′
}

1/2
1/2 k

j ′i ji r
l ′i li g

〈εiκi ||α̂a(p)
L ||ε f κ f 〉〈εiκ

′
i ||α̂a(p ′)

L′ ||ε f κ f 〉

(4.1.4)

Inserting this result into Eq. (4.1.2) we get the following expression for the double differential
cross section:

dσ

dk dΩk
= 4π

5
2
αk2

Z 2p2
i

∑
r s

C(A)
r s Yr,−s (4.1.5)

As pointed out before (see 3.1) the summation index r is determined by the maximum value
of κi (ni = max(κi ) while s can only take the values 0 or ±1. The triangle conditions for the
Wigner-6j symbol [1] lead us to the following equation for the number of coefficients NA in
the most general case:

NA = 3(2ni −1) (4.1.6)

This can be reduced using further properties of the C(A)
r s which will be discussed in the next

section 4.1.2.

4.1.2 Properties of the Angular Coefficients

One influent factor we have not taken into account yet is the polarisation of the incident
electron respectively its counterpart in the equation %(i )

k,−s (see Eq. (3.1.3)). There are four
different possibilities for the electron polarisation. It can be unpolarised, polarised trans-
versely within and perpendicularly to the reaction plane and longitudinally polarised. The
symmetry properties of %(i )

k,−s and the angular coefficients in Eq. (3.1.4) now show us that the
density matrix elements stay same no matter if the electron is polarised transversly in x- or
longitudinally in z-direction (see Ref. [6]). The spherical harmonics do not fulfill a symmetry
relation in the second index which would allow to cancel the contribution of the summands
with s 6= 0. That means only the coefficients C(A)

r 0 are nonzero which reduces the number of
coefficients by the factor of one third. In case of an electron polarised perpendicularly to the
xz-plane one obtains the symmetry relation:

C(A)
r,−s =−C(A)

r s (4.1.7)

This reduces the number of coefficients at least to two thirds of the number mentioned in Eq.
(4.1.6). The final results of these considerations according to number of coefficients needed
for the calculation are shown in Tab. 4.1.

Another useful property is that the angular coefficients with s = 0 do not change when the
polarisation of the electron changes. That means in the case of different polarisations it is not
necessary to calculate the C(A)

r 0 factors again. Just the C(A)
r 1 -coefficients change and have to be

calculated in addition.

24



4.2 Stokes Parameters and Degree of Linear Polarisation

Table 4.1: Number of independent C(A)
r s -coefficients for different initial electron polarisations

and a certain ni . Also the main symmetry of the coefficients is pointed out.
Polarisation Px Py Pz NA Symmetry

unpolarised 0 0 0 2ni −1 only %(i )
00 6= 0

transversely 1 0 0 2ni −1 same density matrix as P = 0v

longitudinally 0 0 1 2ni −1 same density matrix as P = 0v

perpendicularly 0 1 0 2(2ni −1) C(A)
r s odd in s

4.2 Stokes Parameters and Degree of Linear
Polarisation

To describe polarisation phenomena it is convenient to use the Stokes parameters P1, P2 and
P3. P1 and P2 describe the linear polarisation of a photon, while P3 carries the degree of cirular
polarisation. The parameters P1 and P2 are facile available to measurements by recording
the intensity of the emitted light with a certain polarisation angle with respect to the reaction
plane:

P1 = I0° − I90°

I0° + I90°
P2 = I45° − I135°

I45° + I135°
(4.2.1)

Often also the degree of linear polarisation PL is measured. Therefor the coordinate system is
chosen to be elliptic. This leads us to

PL =
√

P 2
1 +P 2

2 χ= 1

2
arctan

P2

P1
(4.2.2)

with the polarisation angle χ.
The final state density matrix of the atomic system also contains all information about the

polarisation of the emitted photon as described in Ref. [1]:

〈kλ|%̂ f |kλ′〉 = 1

2
Tr(%̂ f )

(
1+P3 P1 − iP2

P1 + iP2 1−P3

)
(4.2.3)

From this equation we can get the degree of linear polarisation. It is evident that PL does
not include squared terms. Only the mixed terms of the secondary diagonal density matrix
elements is kept:

PL = 2

Tr(%̂ f )

(〈k1|%̂ f |k −1〉〈k −1|%̂ f |k1〉) 1
2 (4.2.4)

4.2.1 Parametrisation of the Degree of Linear Polarisation

Using again Eq. (3.1.4) we find a very similar parametrisation to Eq. (4.1.3):

PL =
p

2

π
1
4

(∑
r s

C(A)
r s Yr,−s

)−1
(∑

bβ
C(P )

bβYb,−β

) 1
2

(4.2.5)
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4 Observables of Atomic Bremsstrahlung

Table 4.2: Number of independent C(P )
bβ coefficients for different initial electron polarisations

and a certain ni . Also the main symmetry is pointed out.
Polarisation Px Py Pz NP Symmetry

unpolarised 0 0 0 2(2ni −1) only %(i )
00 6= 0

transversely 1 0 0 6(2ni −1) C(P )
bβ even in β

longitudinally 0 0 1 2(2ni −1) only C(P )
b0 6= 0 because s = 0

perpendicularly 0 1 0 6(2ni −1) C(P )
bβ even/odd in |β| = 1,2

Here we introduced the C(P )
bβ -coefficients describing the polarisation properties of the brems-

strahlung radiation while also the C(A)
r s coefficients are included to calculate the trace of %̂ f . In

order to make the expression for the C(P )
bβ -coefficients more convenient to read we introduce

the following symbol which generates the expression between the previous two delimiters
again with tilded indices:(

f (a1, a2, . . . , an)
) · (̃• )= f (a1, a2, . . . , an) · f (ã1, ã2, . . . , ãn) (4.2.6)

Now the coefficients read:

C(P )
bβ = ∑

κiκ
′
iκ f

∑
LL′g

∑
kr s

∑
pp ′

∑
(̃•)

(
(−1)2 ji− j f − j ′i−k+L′+L−li iL′−L+li−l ′i+p+p ′

e
i(∆κi −∆κ′i )

%(i )
k,−s

× [ ji , j ′i ,L,L′, li , l ′i ,r,k]
1
2 (li 0l ′i |g 0)(ksr − s|g 0)

{
L j f ji

j ′i r L′
}

1/2
1/2 k

j ′i ji r
l ′i li g


× 〈εiκi ||α̂a(p)

L ||ε f κ f 〉〈εiκ
′
i ||α̂a(p ′)

L′ ||ε f κ f 〉
) �( •

)∑
bβ

(−1)p+p ′+β[b]−
1
2 (L1L′1|r 2)

× (L̃−1L̃′−1|r̃ −2)(r sr̃ s̃|bβ)(r 2r̃ −2|b0)

(4.2.7)

With a look at the triangle conditions one obtains the corresponding number of C(P )
bβ coeffi-

cients to a certain ni to be

NP = 10(2ni −1) (4.2.8)

This number can also be denotatively reduced.

4.2.2 Properties of the Polarisation Coefficients

It is obvious that more coefficients are needed for the calculation of the polarisation properties.
Taking again the electron polarisation into account we find three cases in which the number
of coefficients is reduced due to symmetry relations shown in Tab. 4.2.

The symmetry relation for longitudinally polarised electrons can be seen in the Clebsch-
Gordan coefficient (r sr̃ s̃|bβ) in Eq. (4.2.7). The statistical tensor (3.1.3) vanishes for s 6= 0 but if
s = 0 the Clebsch-Gordan coefficient vanishes if β 6= 0, so only the coefficients C(P )

b0 are nonzero.

For transversely and perpendicularly polarised electrons it can be found that C(P )
b,−1 =±C(P )

b1
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4.2 Stokes Parameters and Degree of Linear Polarisation

and C(P )
b,−2 = C(P )

b2 where the upper sign describes transversly and the lower perpendicularly
polarised electrons.

Similar to the angular coefficients the polarsation ones do not change with every change
of the electron polarisation. For the polarisation vectors P = (0,1,0) and P = (1,0,0) the
coefficients stay same for β = 0 and equal each other up to a sign change for β = 2. But in
contrast to the angular coefficients there are no symmetries between the cases of polarised
and unpolarised incoming electrons.
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5 Results and Discussion

In this section the results for the angular distribution as well as the polarisation properties
of bremsstrahlung radiation will be discussed. Also the sensitivity of the observables to the
electron polarisation and their energy will be treated. However the main part will be the
analysis of the behaviour of the expansion coefficients (4.1.4) and (4.2.7).

5.1 Angular distribution

The angular distribution stays same either if the incident electron is unpolarised or polarised
within the xz-plane (see 4.1.2). So we restrict ourselves to the two cases where the electron is
polarised along the y-axis or not. A comparison between these two cases for different electron
energies can be seen in Fig. 5.1. The cross-section decreases for higher electron energies and
the maxima are shifted towards the forward scattering region. As one can see the symmetry of
the cross-section is sensitive to an electron polarised perpendicularly to the reaction plane.
This asymmetry increases with lower photon energies and amounts e.g. for a photon energy
of 100keV to about 7% (discrepancy between the two maxima).

5.2 Angular Coefficients

The behaviour of the angular coefficients is very important in order to decide how many
coefficients to take into account. Furthermore to get access to all bremsstrahlung properties
for arbitrary initial conditions especially the behaviour of the coefficients for different energies
and nuclear charges is important. Fig. 5.2 shows us how the angular coefficients behave for
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(a) Angular distribution with P = (0,0,0)
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(b) Angular distribution with P = (0,1,0)

Figure 5.1: Angular distribution for different polarisations and photon energies εi (blue:
200keV, red: 150keV, yellow: 100keV) where ε f = 1eV and Z = 79 always.
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5 Results and Discussion

different r . It can be seen that the absolut value of the coefficients decreases rapidly. For a
photon energy of 100keV, s = 0 and r = 10 it is less than 0.1% of the first value. When |s| = 1 it
decreases slightly slower and reaches 0.1% of the first value when r = 11. In absolute values
the coefficients with |s| = 1 are about one order of magnitude smaller than the ones with s = 0,
so the slower decreasing behaviour has less relevance. The detail view in Fig. 5.2c and 5.2d
reveales that the convergence is still faster for lower energies.
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(a) Angular coefficients with s = 0
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(c) Angular coefficients with s = 0 (detail)

8 9 10 11 12 13

-0.0001

-0.00008

-0.00006

-0.00004

-0.00002

0.0000

r

C
r1

HA
L

(d) Angular coefficients with |s| = 1 (detail)

Figure 5.2: Dependency of the angular coefficients on the summation index r for different
energies εi (blue: 100keV, red: 90keV, yellow: 80keV) where ε f = 1eV and Z = 79
always.

Though the expansion was derived from the former work of Yerokhin and Surzhykov it
perfectly reproduces the results published by Yerokhin and Surzhykov [6]. In Fig. 5.3 we see
that we have very good agreement with the full calculations even with only seven coefficients
taken into account. In the backscattering and forward scattering region the calculation is more
inaccurate while the relative error is less than 5% for a wide angular range. For the results from
the expansion to the ninth order the relative error never exceeds 2%. This is a very promising
fact because we can reproduce the results from exact calculations with a very good accuracy
with less than ten coefficients.

The coefficients are discrete in the energy because the reduced matrix elements have to
be calculated for specific energies. Nevertheless we want to calculate the bremsstrahlung
properties for arbitrary energies. In order to achieve this Fig. 5.4 tells that the coefficients
behave smooth enough that an interpolation is possible. It also shows that the difference
between the coefficients decreases with increasing energies so we can make the grid less
narrow for higher energies.
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5.2 Angular Coefficients
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Figure 5.3: Angular distribution and relative error for different orders of the expansion in
comparison to the results of Yerokhin and Surzhykov [6] (black) with rmax = 9 (red),
rmax = 8 (yellow), rmax = 7 (green), Z = 79, εi = 100keV, ε f = 1eV and unpolarised
incident electrons.

Souch an interpolation is done and shown in Fig. 5.7 for an energy of 90keV for the initial
electron and the emitted photon. The interpolating function was chosen lineary. Fig. 5.7 also
confirms us that a grid interval of 20keV is still enough to get results with an error less than 5%
compared to the exact calculations. Thus it is possible to calculate the angular distribution
respectively the trace of the density matrix for continuus energies.
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Figure 5.4: Energy dependence of the first four (blue: r=0, red: r=1, yellow: r=2, green: r=3)
angular coefficients with s = 0, Z = 79 and ε f = 1eV

The second parameter we can vary is the nuclear charge. As Fig. 5.6 shows it is also not
necessary to calculate the coefficients for every element. The coefficients change even slower
with Z than they do when the enegery is varied. An interpolation example is shown in Fig.
5.5. We achieve a still very good precision (less than 5%) when only every tenth element is
calculated while we can get the results for the other elements from a linear interpolation.
For higher nuclear charges the coefficients vary slightly faster so the grid should be chosen
narrower for higher Z .
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Figure 5.5: Angular distribution calculated with interpolated angular coefficients (red) and
relative error (blue, right) in comparison to the exact calculations (black) for εi =
90keV and Z = 79. The interpolation was done lineary between εi = 80keV and
εi = 100keV.
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Figure 5.6: Z dependence of the first four (blue: r = 0, red: r = 1, yellow: r = 2, green: r = 3)
angular coefficients with s = 0, εi = 100keV and ε f = 1eV

With that knowledge we can tabulate the coefficients to include them in programs or even
in analytical calculations. An example how souch a table might look is given in Tab. 5.2.

5.3 Degree of Linear Polarisation

If one considers the degree of linear polarisation one has to discern three cases regarding the
polarisation of the incident electron. It stays same for an unpolarised or polarised electron if
P = (0,0,1). As shown in Fig. 5.8 it changes remarkably when the incident electron is polarised
along the y-axis. For the electron being polarised in the x-direction the graph becomes non
differentiable in the symmetry axis. Furthermore the degree of linear polarisation is not very
sensitive to the energy of the emitted photon. Only in the case of P = (0,1,0) the value and
localisation of the local maximum around π changes.
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5.3 Degree of Linear Polarisation
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Figure 5.7: Angular distribution calculated with interpolated angular coefficients (red) and
relative error (blue, right) in comparison to the exact calculations (black) for Z = 60
and εi = 100keV. The interpolation was done lineary between Z = 55 and Z = 65.

Table 5.1: Example table for the angular coefficients with εi = 100keV, ε f = 1eV, Z = 79 and
P = (0,1,0)

r s C(A)
r s r s C(A)

r s

0 0 0.507724302002963 7 0 −0.00947795293744706
0 1 0 7 1 −0.000363319590388501
1 0 0.344398501936081 8 0 −0.0034552983855032
1 1 0.00375785864104833 8 1 −0.000113492766815833
2 0 0.0398815490245401 9 0 −0.00117350981920064
2 1 0.0108615859536079 9 1 −5.90791861920147×10−5

3 0 −0.0690212194897701 10 0 −0.000347139388737766
3 1 0.00203077709708729 10 1 −2.03471645012551×10−5

4 0 −0.0706543567085907 11 0 −8.52271316334904e ×10−5

4 1 −0.000386051548485655 11 1 −5.43700045696847×10−6

5 0 −0.0454458251636845 12 0 −1.66110811896278×10−5

5 1 −0.000546896145553714 12 1 −1.03745657519108e ×10−6

6 0 −0.0232652024012356 13 0 −2.65429283516658e ×10−6

6 1 −0.000504003977197155 13 1 −1.73033238817568e ×10−7
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(a) P = (0,0,0) or P = (0,0,1)
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(b) P = (1,0,0)
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(c) P = (0,1,0)

Figure 5.8: Degree of linear polarisation for different electron polarisations and photon en-
ergies εi (blue: 100keV, red: 90keV, yellow: 80keV) where ε f = 1eV and Z = 79
always.
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5 Results and Discussion

5.4 Polarisation Coefficients

Again we want to investigate the convergence behaviour of the expansion coefficients. In Fig.
5.9 it can be seen that the polarisation coefficients converge still quite fast but slower than the
angular ones.
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Figure 5.9: Dependency of the polarisation coefficients on the summation index b for different
energies εi (blue: 100keV, red: 90keV, yellow: 80keV) where ε f = 1eV, Z = 79 and
P = (0,1,0) always.

Since the squareroot is taken of the polarisation expansion the degree of linear polarisation
is more sensitive to small changes of the polarisation coefficients. If the expansion is finished
too early complex values of PL might appear.
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Figure 5.10: Degree of linear polarisation and relative error for different orders of the expansion
in comparison to the results of Yerokhin and Surzhykov [6] (black) with bmax = 18
(red), bmax = 16 (yellow), bmax = 14 (green), Z = 79, εi = 100keV, ε f = 1eV and
unpolarised incident electrons. The Trace of %̂ f was calculated following Ref. [6]

From Sec. 4.2.2 we expect that twice the number of coefficients is needed for the polarisation
parametrisation in the case of unpolarised incident electrons. Fig. 5.10 illustrates the degree
of linear polarisation for different maximum values of b. Although complex values appear in
the backscattering area we still reproduce the results of Yerokhin and Surzhykov [6] with an
excellent accuracy for angles between 0.2 and 2.2. The intervals where PL becomes almost
zero the difference increases immediately although the absolute error is still small.

As well as the C(A)
r s -coefficients the polarisation coefficients can be interpolated because

they behave similary smooth as shown in Fig. 5.11.
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5.4 Polarisation Coefficients
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Figure 5.11: Energy dependence of the first four (blue: b=0, red: b=1, yellow: b=2, green: b=3)
polarisation coefficients with β= 0, Z = 79, and an unpolarised incident electron.

If we try to interpolate the coefficients for an energy between two nodes we recognise that
the degree of linear polarisation is more sensitive to small aberrations of the coefficients.
Because of that we choose the distance between the nodes to be 10keV. The results of these
calculations are shown in Fig. 5.12. Again we have very good agreement with the exact results.
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Figure 5.12: Degree of linear polarisation calculated with interpolated polarisation coefficients
(red) and relative aberration (blue, right) in comparison to the exact calculations
(black) for εi = 85keV and Z = 79. The interpolation was done lineary between
εi = 80keV and εi = 90keV. For the denomiator of PL 4.2.4 the exact calculations
were used.

The interpolation was done for an energy of 85keV. To select only the influence of the
interpolation of the polarisation coefficients the trace of %̂ f was calculated following Ref. [6].

The polarisation coefficients can also be easily interpolated on the Z -scale as Fig. 5.13
suggests. One should notice that the polarisation coefficients do not need a narrower grid for
interpolation than the angular coefficients but still vary faster with increasing nuclear charge.
This should be taken into account when the distance between the nodes is set. As expected we
achieve again a very good agreement with the exact calculations what can be seen in Fig. 5.14.
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5 Results and Discussion
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Figure 5.13: Z dependence of the first four (blue: r=0, red: r=1, yellow: r=2, green: r=3) polari-
sation coefficients with β= 0, εi = 100keV and ε f = 1eV
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Figure 5.14: Degree of linear polarisation calculated with interpolated polarisation coefficients
(red) and relative aberration (blue, right) in comparison to the exact calculations
(black) for Z = 60 and εi = 100keV. The interpolation was done lineary between
Z = 55 and Z = 65. For the denomiator of PL 4.2.4 the exact calculations were
used.

An example table for the polarisation coefficients is given in Tab. 5.4.
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5.4 Polarisation Coefficients

Table 5.2: Example table for the polarisation coefficients with εi = 100keV, ε f = 1eV, Z = 79
and P = (0,1,0)

b β C(P )
bβ b β C(P )

bβ

0 0 0.0455307391400606 7 0 0.000285856828793634
0 1 0 7 1 −0.000364764779191585
0 2 0 7 2 −2.40240651305769×10−6

1 0 0.0441582640164469 8 0 0.00230427132754759
1 1 0.00171185670984908 8 1 −0.000142935235599257
1 2 0 8 2 −2.85733890752573×10−6

2 0 0.00855567848182772 9 0 0.00228665317019291
2 1 0.00275389471308775 9 1 −1.6902607985175×10−5

2 2 −0.000162569058000416 9 2 −2.00942284462305×10−6

3 0 −0.017586797529351 10 0 0.00159682781932193
3 1 0.0017361631014266 10 1 2.54768435832555×10−5

3 2 −3.44314808127355×10−5 10 2 −6.85234397908418×10−7

4 0 −0.0218522572947285 11 0 0.000928140484321267
4 1 8.6291860819548×10−5 11 1 2.87155059171829×10−5

4 2 4.05234499237739×10−5 11 2 −1.79741910964935×10−7

5 0 −0.014125042213156 12 0 0.000474722184523412
5 1 −0.000633549570957712 12 1 2.04209268997743×10−5

5 2 2.35546154627662×10−5 12 2 2.39609107540404×10−8

6 0 −0.00523617311714304 13 0 0.000219089487156156
6 1 −0.000612430493532175 13 1 1.17554781622265×10−5

6 2 3.55984027972872×10−6 13 2 7.78387368883518×10−8

37





6 Summary and Outlook

In this work two methods for the description of atomic bremsstrahlung were discussed. The
density matrix of the system after the scattering process was derived using a Rayleigh ex-
pansion of the photon interaction operator and a partial wave expansion of the free dirac
electron. These derivations were done following Yerokhin and Surzhykov [6] as well as Tseng
and Pratt [7]. From these results a new parametrisation of two observables of electron-atom
bremsstrahlung was presented which expresses the angular distribution and the degree of
linear polarisation in terms of spherical harmonics. That means once the coefficients are cal-
culated the calculation of the bremsstrahlung properties is orders of magnitude faster than the
calculations after Yerokhin and Surzhykov [6]. Also almost real-time calculations are possible
when the tabulated coefficients are used. The coefficients yield a couple of symmetry relations
and converge very fast against zero which reduces the needed expansion order remarkably.
Also they behave very smooth when the other parameters (nuclear charge, εi ) are changed
so we can get the coefficients for arbitrary parameter sets from an interpolation on a two
dimensional grid. The number of coefficients needed increases with the photon energy but
does not exceed 50 for energies up to several hundred keV while for energies less than 100keV
for most applications a monadic number of coefficients is enough. Additionally the distance
between the nodes on the grid can be increased for higher energies because the coefficients
vary less for higher energies so less sets of coefficients are necessary to achieve the same
accuracy.

There are some issues to be done on the parametrisation topic in the future. At the moment
the interpolation is done lineary. A more fitting basis set for an interpolation would on the
one hand increase the accuracy and would allow us on the other hand to increase the distance
between the nodes. Furthermore the case should be considered when the electron only
partially loses its energy id est k

εi
6= 1. This would add one dimension to the interpolation

grid. Nevertheless this extension of the method should be easily possible since one would
expect the coefficients to have similar properties to the cases discussed in this work for the
final electron energy ε f being changed. Once this is done a way should be found to provide
the coefficients in a way which would allow other people to easily access bremsstrahlung
properties. Especially for energies less than 1MeV this can be done in form of tables. For
higher energies the tables might become unclear. A way to solve this problem could be a
software wich generates coefficient tables for arbitrary parameter sets based on interpolations
between hard coded coefficient tables. Also source code, similar to the code used for the
calculations in this work, could be made available to be included in existing simulation codes.
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