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Introduction

The advent of quantum mechanics in the 1920s marked an important step in the development
of modern physics. In 1928, P.A.M. Dirac published his relativistic theory of the electron [1]
and offered an interpration of the occurring negative energy states of the particles. In his “hole
theory”, he identified the vacuum as an infinite sea of occupied negative energy states, which
is stable due to the Pauli exclusion principle. Electrons which are removed from this sea by
means of a sufficient energy transfer leave behind “holes”, which he associated with positively
charged electrons, i.e. positrons, for the first time at the Solvay conference in 1933 [2]. Owing
to the uncertainty principle of quantum mechanics, energy fluctuations are always present and
therefore the vacuum constantly produces (virtual) electron-positron pairs which have the ability
to modify the propagation of (real) light fields through vacuum. In 1936, W. Heisenberg and
his PhD student H. Euler published a generalization of the Maxwell Lagrangian which is now
known as the Heisenberg-Euler Lagrangian [3]. It describes the nonlinear dynamics of slowly
varying electromagnetic fields at one loop order, taking into account couplings to all orders. The
resulting equations of motion for the photon fields are similar to those known from nonlinear
optics and thus, one can adopt the viewpoint that the vaccuum exhibits medium-like properties.
Dirac’s theory was eventually developed further and culminated in the formulation of quantum
electrodynamics (QED), which constitutes the basic theory for the fundamental interaction of
light and matter. In the context of QED, J. Schwinger rederived the results of Euler and Heisen-
berg, employing proper-time methods and effective action approaches, and hence put the results
on firmer theoretical grounds [4].
The signatures of the quantum vacuum nonlinearity, as described by the Heisenberg-Euler

Lagrangian, are manifold (for a recent overview see for example [5]). One of the earliest dis-
cussed effects on the vacuum is the acquisition of a dielectric constant differing from unity.
Hence, real probe photons subject to a strong magnetic background field will experience vac-
uum magnetic birefringence [6, 7] as well as vacuum dichroism [8]. Other effects resulting from
the self-interactions of electromagnetic fields by means of induced electron-positron pairs are,
for example, light-by-light scattering [9] and photon splitting [10]. Conceptionally, all of these
signatures differ in the order to which the microscopic photon field fµν couples to the virtual
electron-positron pair, whose dynamics itself are modified by the coupling to the macroscopic
background field Fµν (to all orders). Photon splitting as a higher order process has already been
observed experimentally [11], albeit by employing atomic fields as background fields and only for
hard photons, i.e. with frequency ω � m, where m denotes the electron mass. In contrast, light-
by-light scattering and magnetic birefringence still await their experimental verification. To this
end, several experiments such as PVLAS [12] and BMV [13] are currently underway and results
should be expected in the upcoming years. Further consequences of the structure of the QED
vacuum are the well studied and established Casimir effect [14] as well as the Schwinger effect,
describing electron-positron pair production in strong electric fields E. The Schwinger effect is a
representative of a process which cannot be treated perturbatively since the pair production rate
for weak fields is suppressed exponentially in the parameter Ecr/E, where Ecr = e/m2 denotes
the Schwinger limit of the electric field strength.
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Introduction

The present work aims at introducing and investigating the effect of quantum reflection as
a new means of probing the quantum vacuum nonlinearity. The term quantum reflection is
commonly employed to describe the reflection of atoms, quantum mechanically regarded as mat-
ter waves, from attractive potentials [15]. This effect can be used to investigate the surface of
condensed matter by shining probe particles onto it at grazing incident angles. The reflected
particles are then a superposition of both atoms reflected classically at the repulsive surface of
the condensed matter as well as atoms subjected to quantum reflection due to the attractive long
range potential.
This work now suggests to carry over this mechanism to the purely optical case by employing

a highly sensitive “pump-probe” setup. A strong magnetic background field, created by a pump
laser, modifies the QED vacuum to act as an effective potential for traversing probe photons.
Since the magnetic field exhibits a spatial (as well as temporal) inhomogeneity, we expect the
incoming probe photons to be partially reflected from the region of the inhomogeneity. In our
analogy the probe photons play the role of the atoms, while the magnetized quantum vacuum
plays the role of the attractive potential created by the condensed matter surface. However, probe
photons unaffected by the vacuum fluctuations simply pass the entire region of inhomogeneity.
This is in contrast to quantum reflection in the atomic case, where the repulsive potential of
the condensed matter gives rise to a large background. We therefore end up with a highly
sensitive setup possessing an inherent signal-background separation, which should prove to be
an important advantage compared to other experiments aiming to probe fluctuation-induced
nonlinearities of the quantum vacuum. Owing to the smallness of the nonlinear effects, one of
the biggest challenges for such standard experiments is usually given by the separation of photons
carrying the optical signatures from such photons which were unaffected by the fluctuations.
The first chapter of this work is devoted to outline the quantum electrodynamical foundations.

We derive an equation of motion (“Quantum Maxwell equation”) to one loop order for photons
traveling through a slowly varying magnetic background field. The central quantity of interest is
the photon polarization tensor, whose derivation is outlined very briefly and which is expanded in
terms of the field strength ratio eB/m2. The second chapter then treats the specific phenomenon
of optical quantum reflection in the limit of small background field strengths. We show two
different ways to derive a closed-form formula for the reflection coefficient for the case of time
independent magnetic fields. By employing this formula, the reflection for various field profiles
is investigated and numerical values based on the soon-to-be available laser facilities POLARIS
and JETI200 in Jena are calculated. The goal is to maximize the effect by suitably shaping
the background laser profile to yield a measurable rate of reflection. The third chapter then
gives a first overview and introduction to space as well as time dependent magnetic background
fields. The formulae complicate noticeably, and final results for the reflection have not yet been
obtained. The last chapter concludes with a summary and prospects for further investigations.
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1. Quantum electrodynamical fundamentals

The first chapter intends to give a brief overview of the quantum electrodynamical fundamen-
tals. In the first section we use the effective action approach to derive the equation of motion,
which describes the propagation of photons in an electromagnetic background field. The central
quantity of interest is the photon polarization tensor in a constant magnetic background field,
whose derivation we outline very briefly and which is evaluated perturbatively for magnetic fields
which are small compared to a critical magnetic field strength Bcr = m2/e.

1.1. Effective action and equation of motion

Our goal is to derive the equation of motion (“Quantum Maxwell equation”) of the photons from
an effective action, which includes the full information about the propagation in an external
magnetic background field at one-loop accuracy. The derivation closely follows [16]. The starting
point is the usual “bare” QED action

S[ψ, ψ̄,A] =

∫
d4x LQED =

∫
d4x

(
iψ̄ /Dψ −mψ̄ψ − 1

4
FµνF

µν

)
, (1.1)

where /D = γµD
µ = γµ(∂µ− ieAµ) denotes the contracted gauge covariant derivative and Fµν =

ie [Dµ, Dν ] the field strength tensor. The 4-component Dirac spinors ψ and ψ̄ = ψ+γ0 represent
fermionic particles and anti-particles respectively. Switching to the Euclidean formulation of
QFT, connected correlation functions, or n-point functions 〈χ(x1) . . . χ(xn)〉, can be obtained
from the generating functional

Z[J ] = eW [J ] =

∫
Λ

Dχ e−S[χ]+
∫
Jχ = 〈0|0〉J (1.2)

via the relation

〈χ(x1) · · ·χ(xn)〉 =

∫
Λ Dχ χ(x1) . . . χ(xn)e−S[χ]∫

Λ DΦ e−S[χ]
=

δ

δJ(x1)
· · · δ

δJ(xn)
W [J ]

∣∣∣∣
J=0

. (1.3)

As a shorthand notation, the so-called “super-vector” χ = (ψ, ψ̄,A) has been introduced and the
product χJ is understood to be over all possible field components. Z[J ] is the vaccuum-vacuum
transition amplitude in the presence of an external source field J , W [J ] is called “Schwinger
functional” and presents a more effective way of storing the relevant information by generating
the connected n-point functions. A lower integration bound Λ (UV cut-off) has been introduced,
since the occurring integrals formally diverge and have to be properly renormalized. We can now
introduce the effective action Γ[φ] by means of a Legendre transformation

Γ[φ] := sup
J

(
−W [J ] +

∫
Jφ

)
, (1.4)
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CHAPTER 1. QUANTUM ELECTRODYNAMICAL FUNDAMENTALS

where the classical field φ(x) is defined by

φ(x) =
δW

δJ(x)
= 〈χ(x)〉J . (1.5)

and represents the vacuum expectation value of the quantum field χ in the presence of a source
term J . Γ[φ] is the generating functional of the 1PI-irreducible correlation functions and governs
the dynamics of the “classical fields” by means of the “quantum equation of motion”

δΓ[φ]

δφ(x)
= J(x), (1.6)

much in the same way in which real classical fields are governed by the classical action S.
Employing a coordinate shift χ → χ + φ, we can derive from Eq. (1.2) a relation to determine
Γ, i.e.,

e−Γ[φ] =

∫
λ
Dχ e−S[φ+χ]+

∫ δΓ[φ]
δφ

χ
. (1.7)

Since Eq. (1.7) is rather hard to solve for any interacting theory, we perform an expansion of
the right-hand-side exponent

−S[φ]−
∫ (

δS[φ]

δφ
− δΓ[φ]

δφ

)
χ− 1

2

∫ ∫
χ
δ2S[φ]

δφ2
χ+O

(
χ3
)
. (1.8)

We note that in a perturbative expansion in the parameter ~, the order of ~ counts the numbers
of loops of a graph [17]. The explanation can be given as follows: Reinstating ~ for the time
being, it only enters as a factor 1/~ in front of the action S and Γ in Eq. (1.7). Since the
propagator corresponding to a line in a graph is given by the inverse of the differential operator
in the interaction-free Lagrangian, each internal line I has a factor of ~. Furthermore, each
vertex V introduces a factor of 1/~, so that the power of ~ is given by

P = I − V (1.9)

and with the known relation L = I − V + 1, where L denotes the number of loops, we get

P = L− 1. (1.10)

Note, that L− 1 includes the overall factor of 1/~ and therefore ~ on the right-hand-side indeed
counts the number of loops. With a substitution χ′ =

√
~χ and realizing that the term in

brackets in Eq. (1.8) must be at least of the order ~, we obtain to the lowest order the general
equation for the one-loop effective action

Γ[φ] = S[φ] + Γ(1)[φ] = S[φ] +
1

2
Tr ln

(
δ2S[φ]

δφ2

)
. (1.11)

The trace “Tr” denotes integration in momentum or position space as well as summation over
Dirac-indices. Using the QED-Lagrangian (1.1) and setting ψ, ψ̄ = 0 after the differentiation (we
are only interested in light propagation in a fermionic vacuum), we obtain

Γ[A] = S[A]− iTr ln(−i /D +m). (1.12)

Here, we have switched back to the usual Minkowski space (hence the factor of i) and the
“−” is due to the Grassmann integration when evaluating the Gaussian integral. Note, that Γ is
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1.1. EFFECTIVE ACTION AND EQUATION OF MOTION

equivalent to an action where the fermionic contributions have been integrated out [18]. Equation
(1.12) is the starting point to obtain the famous Euler-Heisenberg action, which for the first time
allowed the investigation of quantum vacuum effects like birefringence, light-by-light scattering
and electron-positron pair production in strong electric fields. In light of the physical situation
under consideration, we now split the vector potential Aµ(x) = Aµ(x) + aµ(x) into the vector
potential of the background field Aµ and the potential of the probe photon field aµ. We then
perform an expansion in the number of photon fields aµ which couple to the loop, while at the
same time retain the coupling of the background field Aµ to all orders. The intention of this
splitting is to later regard the background field as constant or at most “slowly” varying. To this
end, we make use of the free additive constant to rewrite Γ(1), i.e.,

Γ(1)[a,A] = −iTr ln
[
1 + (/p− e /A+m)−1(−e/a)

]
(1.13)

and use the expansion of the logarithm ln(1 + x) = x− (1/2)x2 +O(x3) to obtain

Γ(1)[a,A] = −iTr

[
1

/p− e /A+m
(−e/a)

]
+
i

2
Tr

[
1

/p− e /A+m
(−e/a)

1

/p− e /A+m
(−e/a)

]

+O

[ 1

/p− e /A+m
(−e/a)

]3


= + +O

[ 1

/p− e /A+m
(−e/a)

]3
 .

(1.14)

The doubled fermion lines in the Feynman diagrams represent the coupling of the fermions to
the external field to all orders.
The individual terms occurring in Eq. (1.14) can be directly interpreted. The first sum term,

which is of first order in /a, corresponds to a tadpole-like diagram: The incoming probe photon
field is absorbed by the magnetic background field. For constant background fields, this process
can be neglected due to the requirement of energy and momentum conservation at the single
vertex. This still holds true for background fields varying slowly in time and space, if only lower
order couplings to the external field are considered. However, an infinite number of couplings
should result in a non-perturbative effect of photon absorption even for slowly varying fields.
We can identify the second order term with photon propagation in a magnetic background

field. The imaginary part of this diagram corresponds to mode specific photon losses by virtue
of electron-positron pair creation. Higher order terms correspond to photon splitting and light-
by-light scattering. Note that terms involving an odd number of aµ and Aµ vanish identically,
which is known as Furry’s theorem: Only an even number of fields can couple to a closed fermion
loop. This is a direct consequence of the charge conjugation symmetry of QED.
Here, we are solely interested in effects related to photon propagation in at most slowly varying

magnetic background fields and furthermore, we will only consider lowest order couplings. This
allows us to only keep the second order term and discard the rest. The second term can be
evaluated explicitly to yield

i
e2

2

∫
d4x d4y aµ(x)trγ

[
γµ〈x|

1

/p− e /A+m
|y〉γν〈y|

1

/p− e /A+m
|x〉

]
aν(y)

= i
e2

2

∫
d4x d4y aµ(x)trγ

[
γµ

1

i
G+(x, y|A)γν

1

i
G+(y, x|A)

]
aν(y), (1.15)
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CHAPTER 1. QUANTUM ELECTRODYNAMICAL FUNDAMENTALS

where

G+(x, y|A) = 〈x| i

/p− e /A+m
|y〉 = x y (1.16)

denotes the dressed electron-propagator in position space, which describes electron propagation
in a background field involving couplings to all orders. We now define the photon polarization
tensor Π

(2)
µν (x, y|A) in an electromagnetic background field at one loop order by

Π(2)
µν (x, y|A) = −ie2trγ [γµG+(x, y|A)γνG+(y, x|A)] (1.17)

and hence we arrive at the effective action

Γ[a,A] = −1

4

∫
d4xFµνF

µν

∣∣∣∣
a+A

− 1

2

∫
d4x d4y aµ(x)Π(2)

µν (x, y|A)aν(y). (1.18)

We now obtain the equations of motion for the probe field aµ from Equation (1.18). The field
strength tensor Fµν |A is considered constant and we can therefore neglect the contribution of
Aµ in the first integral of (1.18) in the following calculation. Switching to momentum space by
means of the Fourier transformations (A.11) and evaluation of the emerging delta-functions leads
to

Γ[a] =

∫
d4q

(2π)4

∫
d4p

(2π)4

[
−1

2
δ(p+ q)

(
aν(q)aν(p)p2 − pνpµaµ(q)aν(p)

)
−1

2
aµ(q)Πµν(−q,−p|A)aν(p)

]
. (1.19)

The corresponding Lagrange equations can be obtained from the variational principle

δΓ[a]

δaα(k)
= 0 (1.20)

and are given by

k2aα(−k)− kνkαaν(−k) = −1

2

∫
d4p

(2π)4

[
Παν(−k,−p|A)aν(p) + Πµα(−p,−k|A)aµ(p)

]
. (1.21)

The polarization tensor is symmetric in the indices, and hence we arrive at the equations of
motion

(k2gµν − kµkν)aν(k) = −
∫

d4k′

(2π)4
Π̃µν(k,−k′|A)aν(k′). (1.22)

Here, the symmetrized polarization tensor Π̃µν(k, k′|A) = 1
2 [Πµν(k, k′|A) + Πµν(k′, k|A)], which

generally mediates between two distinct momenta k and −k′, has been introduced. For the case
of a constant background field, momentum conservation dictates the polarization tensor to be of
the form

Πµν(k, k′|A) = 2πδ(k + k′)Πµν(k|A), (1.23)

and the equations of motion simplify to[
k2gµν − kµkν + Πµν(k|A)

]
aν(k) = 0. (1.24)

In our case, however, Eq. (1.22) serves as the starting point for the calculation of the reflected
field. As a simplification, we neglect the effect, which the induced field aind(k) will have on its
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1.2. THE PHOTON POLARIZATION TENSOR IN A CONSTANT MAGNETIC FIELD

own further propagation and on the magnetic field. Therefore, we regard the right-hand side of
Eq. (1.22) as a current j(k), which is solely generated by the incoming beam ain(k′), i.e.

jµ(k) =

∫
d4k′

(2π)4
Π̃µν(k,−k′|A)(ain)ν(k′). (1.25)

This current in turn is being interpreted as the source for the induced photon beam, and the
equations of motion take on the form

(k2gµν − kµkν)(aind)ν(k) = −jµ(k). (1.26)

Eq. (1.26) is a tensor equation of rather complicated structure, since the interaction with elec-
tromagnetic fields generally mixes different polarization modes of the photon field. Later on we
will see, how this equation can be cast into a simpler one with trivial tensor structure for certain
polarization modes.

1.2. The photon polarization tensor in a constant magnetic field

This section is devoted to giving an overview of the vacuum photon polarization tensor Πµν .
This quantity, also known as the “photon self energy”, describes the modified propagation of
photons in vacuum due to QED effects and plays a similar role for the photon as does the “mass
operator” Σ for the electron. At the lowest loop order, the photon propagation is modified by the
creation and subsequent annihilation of virtual electron-positron pairs, which now induce non-
linear interactions between electromagnetic fields. Hence, the superposition principle of classical
electromagnetism is no longer valid and effects, which should not exist classically, are predicted
by QED. The vacuum therefore possesses the ability to modify photon propagation through
external electromagnetic fields and acquire medium-like properties.
To elucidate the concept of the polarization tensor, we first consider photon propagation in a

vacuum without external fields. The vacuum photon polarization tensor Πµν(k) is defined as the
sum of all one-particle irreducible diagrams (1PI) without external legs, which contribute to the
full photon propagator GµνA (k), i.e.

1PIµ ν = µ ν + µ ν + µ ν

+ µ ν + O(e6)

=: iΠµν(k).

(1.27)

The direction of the momentum is omitted for the sake of clarity. The full photon propagator is
given by the geometric series

GµνA (k) = µ ν + 1PIµ ν + 1PI 1PIµ ν + . . .

= Dµν +Dµ
κiΠ

κλDν
λ +Dµ

κiΠ
κλDλδΠ

δβDν
β + . . .

(1.28)

where
Dµν(k) =

i

k2

(
δµν + (α− 1)

kµkν

k2

)
(1.29)
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CHAPTER 1. QUANTUM ELECTRODYNAMICAL FUNDAMENTALS

denotes the photon propagator for the non-interacting theory for various Lorenz gauges (α→ 0:
Landau-gauge, α→ 1: Feynman-gauge). The “Ward identity” now implies that the polarization
tensor possesses no longitudinal components, i.e.

Πµν(k) = (k2gµν − kµkν)Π(k), (1.30)

with a scalar function Π(k). The polarization tensor can be calculated explicitly to one loop order,
see for instance [18]. The calculation becomes more involved, if we consider photon propagation
in an constant, external electromagnetic field. An explicit derivation is given in [19] for the case
of a constant magnetic field, which shall be very briefly outlined here.
As a first step, the electron propagator G+ in a constant, external magnetic field B, satisfying[

γµ
(

1

i
∂′µ − e Aµ(x′)

)
+m

]
G+(x′, x′′, A) = δ(x′ − x′′), (1.31)

has to be calculated. To simplify the computation, the magnetic field is chosen to point in
the z-direction and equation (1.31) is solved employing the Schwinger-Fock gauge A′µ(x′) =
−1/2 Fµν(x′ − x′′)ν . At the end, we multiply the “holonomy factor”

Φ(x′, x′′, A) := exp

[
ie

∫ x′

x′′
dxµ

{
Aµ(x)−A′µ(x′)

}]
(1.32)

to “transport” the gauge back from A′ to any arbitrary gauge A. Furthermore, the magnetic field
sets an external reference direction and Lorentz vectors as well as tensors can be decomposed in
directions parallel and perpendicular to the magnetic field B = Bez, i.e.

a‖ := (a0, 0, 0, a3), a⊥ := (0, a1, a2, 0) and (ab)‖ := −a0b0 + a3b3, (ab)⊥ := a1b1 + a2b2

(1.33)
as well as

g‖ =


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 and g⊥ =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 . (1.34)

The result for the electron propagator g(k) in momentum space, defined by

G+(x′, x′′, A) = Φ(x′, x′′, A)

∫
d4k

(2π)4
eik(x′−x′′)g(k), (1.35)

reads

g(k) = i

∫ ∞
0

ds exp
{
−is

[
m2 − ie+ k2

‖ +
tan z

z
k2
⊥

]}
· e

iσ12z

cos z

(
m− (γk)‖ −

e−iσ
12z

cos z
(γk)⊥

)
,

(1.36)
where z := eBs.
Employing the usual Feynman rules, the polarization tensor in an external magnetic field to

the lowest order is given by

Π(2)
µν (k|B) = −ie2trγ

∫
d4p

(2π)4
γµg(p)γνg(p− k) + c.t. (1.37)
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1.2. THE PHOTON POLARIZATION TENSOR IN A CONSTANT MAGNETIC FIELD

and corresponds to the Feynman graph

µ ν . (1.38)

The coupling of the electron-positron pair to the external magnetic field to all orders is accounted
for by means of the dressed electron propagator g(p). The additional contact terms (c.t.) renor-
malize the expression and can be chosen in such a way that the polarization tensor vanishes for
the combined limit of vanishing momentum k and magnetic field B, i.e. Π

(2)
µν (k → 0, B → 0) = 0.

Such a choice relates the QED coupling α to the cross section of Thomson scattering. The γ
traces and the momentum integration can be evaluated explicitly and the polarization tensor be
expressed in terms of a double parameter integral. The end result reads (omitting the label (2)
from here on)

Πµν(k|B) = Pµν0 Π0(k|B) + Pµν‖ Π‖(k|B) + Pµν⊥ Π⊥(k|B) (1.39)

with 
Π0

Π‖
Π⊥

 =
α

2π

∫ ∞
0

ds

s

∫ 1

−1

dν

2

e−isφ̃0


k2 N0

N0k
2
⊥ +N1k

2
‖

N2k
2
⊥ +N0k

2
‖

− e−im2sk2(1− ν2)

 , (1.40)

where

N0 = cos νz − ν sin νz cot z,

N1 = (1− ν2) cos z,

N2 = 2
cos νz − cos z

sin2 z
and

φ̃0 = m2 +
1− ν2

4
k2
‖ +

1

2

cos νz − cos z

z sin z
k2
⊥.

(1.41)

The contour of the s integration is implicitly understood to lie slightly below the real positive
s-axis, i.e. m2 → m2 − iε. Furthermore, we introduced the projectors

Pµν‖ (k) = gµν‖ −
kµ‖k

ν
‖

k2
‖
, Pµν⊥ (k) = gµν⊥ −

kµ⊥k
ν
⊥

k2
⊥

and Pµν0 (k) = gµν− k
µkν

k2
−Pµν‖ (k)−Pµν⊥ (k) ,

(1.42)
which span the transverse subspace, i.e. the subspace defined by the projector

PT (k) = gµν − kµkν

k2
. (1.43)

They fulfill the usual projector identities ( p ∈ {‖,⊥, 0, k})

(Pp)
µν(Pp)

ρ
ν = (Pp)

µρ,

(Pp)
µν(Pp′)

ρ
ν = 0 for p 6= p′,

gµν = Pµν‖ + Pµν⊥ + Pµν0 + Pµνk ,

(1.44)

where the remaining projector Pµνk = kµkν/k2 spans the longitudinal eigenspace. The result Eq.
(1.39) still fulfills the Ward identity, which requires kµΠµν(k) = 0. For the case of eB ∦ k and the

11



CHAPTER 1. QUANTUM ELECTRODYNAMICAL FUNDAMENTALS

magnetic field pointing into the z-direction, explicit representations of the first two projectors
defined by (1.42) are given by

Pµν‖ =
1

k2
‖


−k2

z 0 0 −ωkz
0 0 0 0
0 0 0 0
−ωkz 0 0 −ω2

 , Pµν⊥ =
1

k2
⊥


0 0 0 0
0 k2

y −kxky 0

0 −kxky k2
x 0

0 0 0 0

 . (1.45)

In the presence of an external magnetic field, there hence exist three independent photon prop-
agation modes onto which the quantities (1.42) project. For k ∦ B, P‖ and P⊥ refer to photon
polarization modes parallel and perpendicular to the plane spanned by k and B. These modes
can be continuously related to the corresponding ones in the limit of a vanishing external field.
In the case of k ‖ B, only one externally set direction is left. Now the projectors P0 and P⊥
correspond to the two photon modes in the limit of a vanishing magnetic field (see [20]).
For the sake of completeness, let us give the result for a vanishing magnetic field. In the limit

B → 0, the quantities Ni → (1 − ν2) as well as φ̃0 → m2 + (1 − ν2)/4 k2 simplify and the
polarization tensor can be written as

Πµν(k|B = 0) = (gµνk
2 − kµkν)

α

2π

∫ ∞
0

ds

s

∫ 1

−1

dν

2
(1− ν2)e−im

2s

[
e−is

1−ν2

4
k2 − 1

]
. (1.46)

This result naturally complies with Eq. (1.30).
A derivation of the photon polarization tensor to the lowest order for the case of arbitrary

constant magnetic and electric fields was first obtained in 1971 [21]. A nice presentation of
the derivation can be found in [22]. There, use has been made of the fact that an explicit
representation of the polarization tensor was obtained in [23] for the case of parallel magnetic
and electric fields. Employing the knowledge, that the final Lorentz and gauge invariant solution
for an arbitrary field configuration may only depend on Lorentz and gauge invariants, which are
made up of the basic building blocks Fµν , ?Fµν and kµ, a one-to-one correspondence between
those invariants and the dynamical variables E, B, k2

⊥ and k2
‖ of the special polarization tensor

can be established. Furthermore, the tensor structure can as well be related unambiguously to
the appropriate one in a general, arbitrary Lorentz frame. The obtained general result then
reduces to Eq. (1.39) in the case of vanishing electric fields.
Another convenient representation of the projectors P‖ and P⊥ is given by

Pµν‖ =
vµ‖ v

ν
‖

v2
‖

and Pµν⊥ =
vµ⊥v

ν
⊥

v2
⊥

, (1.47)

where
vµ‖ = |k| [ek · eB, v̄ eB] and vµ⊥ = |k| [0 , ek × eB] , (1.48)

and the phase velocity is defined by v̄ = ω/|k|. The equivalence with (1.45) can be quickly
verified.

Perturbative treatment: The weak field limit

In this section, we give expressions for a Taylor expansion of the photon polarization tensor in
terms of eB/m2 = B/Bcr. For any present and near future laser facility, attainable magnetic
fields strengths are well below the critical field strength Bcr, as will be discussed in more detail

12



1.2. THE PHOTON POLARIZATION TENSOR IN A CONSTANT MAGNETIC FIELD

later. Hence, to simplify the computation and obtain analytical insights into the processes related
to quantum reflection, an inspection of only the lowest orders seems justified. This expansion
corresponds to neglecting higher order couplings of the external magnetic field to the virtual
electron-position pairs. Hence, the polarization tensor can be written as

Πµν(k|B) =
∞∑
n=0

Πµν
(2n)(k) (eB)2n

= Πµν
(0)(k) + Πµν

(2)(k) (eB)2 +O
[
(eB)4

]
,

(1.49)

which, as a consequence of Furry’s theorem, is in even powers of eB only. The calculation of
the expansion coefficients is straightforward and shall not be demonstrated here. The (n = 0) -
coefficient is already given by Eq. (1.46). The s integration can be performed using proper-time
integration techniques, keeping in mind the actual contour of integration (m2 → m2 − iε). The
result in its most compact form reads

Πp,(0)(k) =
(
k2
)2 α

4π

∫ 1

0
dν

(
ν2

3
− 1

)
ν2

φ0
, (1.50)

with

φ0 = m2 − iε+
1− ν2

4
k2. (1.51)

The label p shall henceforth refer to the three different polarization modes p = 0, ‖,⊥. The
second order can be calculated analogously and is given by (see also [24])

Πp,(2)(k) = − α

12π

∫ 1

0
dν

(1− ν2)2

φ2
0




1
− 2

1−ν2

1

 k2
‖ +




1
1

5−ν2

2(1−ν2)

− k2(1− ν2)

4φ0

 k2
⊥

 . (1.52)

The polarization tensor in this form will constitute the basis of our further studies. It is im-
portant to note, that each coefficient still contains the complete information about the entire
momentum dependence. This fact is of great importance, since the upcoming considerations
require a representation of the polarization tensor in position space by means of Fourier trans-
formations in order to properly deal with the boundary conditions inherent to our problem.
Concerning this aspect, the treatment shows some similarity with the theoretical treatment of
axion-like-particle searches, where the proper inclusion of boundary conditions requires Fourier
transformations to position space as well [25]. On the contrary, many signatures of the quantum
electrodynamical nonlinearity of the vacuum can properly be dealt with theoretically by means
of “on the light-cone dynamics”, i.e. by treating the problem exclusively in momentum space and
imposing the vacuum light-cone condition k2 = 0. The most prominent example is the calcula-
tion of the vacuum refractive indices in the presence of strong electromagnetic fields, which leads
to the effect of vacuum birefringence (see also [26]).
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2. Reflection at static magnetic fields

Having derived an expression for the photon polarization tensor in a constant magnetic field, this
chapter now deals with the specific phenomenon of quantum reflection. Since reflection manifestly
requires the inhomogeneity of the background potential, we have to alter the expression for the
photon polarization tensor to include position dependent magnetic fields. We will neglect a
possible time dependency of the magnetic field to gain some first insights into the structure of
the equations and magnitude of the effects. The subsequent chapter will extend the treatment
to time dependent magnetic field backgrounds.
In the first section, we specify the setup and derive an expression for the reflection coefficient R.

The second section shows an alternative derivation similar to ordinary, one dimensional quantum
mechanics. In the third section, we investigate some specific beam profiles and compute numerical
values of R in order to get a notion of the magnitude of the effect.

2.1. The derivation of the reflection coefficient

The effect of quantum reflection describes the reflection of atoms off an attractive potential,
which is a direct consequence of the quantum mechanical nature of particles. Atoms must be
regarded as matter waves and therefore exhibit wave-like behavior. Partial reflection of light
waves at both positive and negative refractive index steps are well known phenomena, which
from a quantum mechanical viewpoint must also arise for matter waves. A massive particle with
the energy Ekin, traveling in a potential V (x) with maximum Vmax, will therefore experience
scattering even if Ekin > Vmax. Such “above-the-barrier” scattering depends on the spatial
variation of the potential. Particles with Ekin < Vmax on the other hand will experience reflection
at the potential barrier in both the classical and quantum mechanical theory, although the latter
allows for classically forbidden processes like “tunneling”, depending on the specific shape of
the potential. Quantum reflection is currently put to use to very accurately measure the surface
properties of condensed-matter specimens, since reflection is very sensitive to the spatial profile of
the potential generated by the surface atoms. To this end, polarizable probe atoms hit the surface
at a grazing angle of incidence and are reflected both “classically” by the repulsive potential of
the surface as well as “quantum mechanically” by the attractive long range potential owing to
the Casimir-Polder and Van der Waals force. The discrete surface potential usually produces
diffuse reflection, while quantum reflection generates a specular reflection which can then be
investigated accordingly [27]. Usually, the separation of these two signals of different origin may
provide a big challenge depending upon the specific experiment.
Carrying over the scenario of quantum reflection to the purely optical case, we now aim to

investigate how a strong, inhomogeneous magnetic background field, which acts as an effective
potential for traversing probe photons, will alter the propagation of these probe photons. In
analogy to the case of atomic quantum reflection, we expect a part of these probe photons to be
reflected by the inhomogeneity and the rate of the reflection to depend on the spatial shape of
background field. However, in contrast to the aforementioned surface experiments, there exists
no optical analogon of a repulsive potential and therefore very little background noise can be
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2.1. THE DERIVATION OF THE REFLECTION COEFFICIENT

y

x

Reflection Transmission

β

k

kx

ky

k′

ky

k′x

k′

B(x)

Field Inhomogeneity

Figure 2.1.: A basic visualization of the effect of quantum reflection from [28]. Roman letters x and y
denote the spatial components of the spatio-temporal four-vector x, see appendix A. The static, one
dimensional field inhomogeneity of amplitude B(x) is infinitely extended in the transversal directions,
but falls off to zero asymptotically for large values of |x|. The probe photons with wave vector k′ hit
the inhomogeneity under an angle β, which denotes the direction of k′ with respect to the x axis. The
reflected photons with wave vector k are measured by a suitably placed detector spanning the y-z plane.

expected. This should allow for a clear signal-background separation and facilitate the use of
very sensitive methods of measurement such as single photon detection techniques.
To investigate the phenomenon of quantum reflection, we consider the following setup (see

Fig. 2.1, [28]): Let the spatial inhomogeneity of the magnetic field be centered around the origin
x = 0 and directed along the x axis, while the field is homogeneous along the y and z direction.
Furthermore, it is assumed that the magnetic field decreases rapidly enough along the x direction
for |x| → ∞. Here, Roman letters are used to denote spatial components of the spatio-temporal
four-vector x, for more detail see the appendix A. The spatial extension of the inhomogeneous
magnetic field is assumed to be of the order of width w. Additionally, the direction of the magnetic
field B = B(x)eB is fixed and only its amplitude varies. Then, the magnetic field still defines a
global reference direction, according to which the polarization tensor can be decomposed along
the lines of the last chapter. Without loss of generality, the incident probe beam is considered
to travel within the x-y-plane, having the momentum vector k′ = k′x ex + k′yey. The direction of
the probe beam is described by the incidence angle β = arctan(k′y/k

′
x). The asymptotic decline

of the magnetic field implies that the light-cone condition k2 = 0 has to be fulfilled far from the
origin.
To simplify Eq. (1.26), we can make use of the fact that the inhomogeneity only affects

momentum components along its direction. Therefore, the y and z components of the momentum
remain unaffected throughout the whole process, i.e. k′y = ky and k′z = kz. The reflected beam
then has the momentum vector k = kxex + kyey = kxex + k′yey. These assumptions effectively
reduce the problem under consideration to a one dimensional problem. If only special photon
polarization modes are considered, we can furthermore rid ourselves of the rather complicated
tensor structure of Eq. (1.26). These two situations can be identified as follows:
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CHAPTER 2. REFLECTION AT STATIC MAGNETIC FIELDS

Parallel case: For the case of the direction of the magnetic field inhomogeneity ex and the
direction of the magnetic field eB being orthogonal to each other, i.e. ex · eB = 0, the
‖-component of the photon momentum k′‖ remains unaffected by the inhomogeneity. Thus,
the projectors

Pµν‖ (k) = Pµν‖ (k′) = Pµν‖

are the same for k and k′. The same holds especially true for k′‖ = 0, i.e. the direction
of photon momentum and magnetic field are orthogonal to each other. In view of our
two dimensional discussion, the only fixed direction of the magnetic field to fulfill this
requirement for arbitrary angles β is given by eB = ez. Note that the energy-component
of k′ = (ω,k′) remains naturally unaffected for time-independent magnetic fields. This
fact also implies |k′| = |k| at asymptotically large distances from the inhomogeneity, since
k2 = 0 and no frequency conversion can take place.

Perpendicular case: For the case of the inhomogeneity and the perpendicular momentum com-
ponent of the photon k′⊥ being orthogonal to each other, i.e. k′⊥ ·ex = 0, the ⊥-component
of the photon momentum is not affected by the inhomogeneity and analogously

Pµν⊥ (k) = Pµν⊥ (k′) = Pµν⊥

are the same for k and k′. A closer examination shows that only one direction eB of the
magnetic field fulfills the requirement for arbitrary angles of incidence β. Since k′⊥ =
k′ − (k′ · eB)eB and we demand k′⊥ · ex = 0, the following condition

k′ · ex = (k′ · eB)(eB · ex) (2.1)

has to hold. Employing the two dimensional treatment

k′ = k′xex + k′yey = |k|(cosβ ex + sinβ ey)

as well as B = Bxex +Byey +Bzez leads us to the requirement of(
B2
y +B2

z

)
= tanβ BxBy. (2.2)

For a fixed direction of B, Eq. (2.2) can only be satisfied for arbitrary angles β < π/2 if
By = Bz = 0, i.e. the magnetic field points into the direction of the inhomogeneity. Other
directions of B fulfill Eq. (2.2) only for certain specific angles β, as can be seen in Fig. 2.2.

The invariance of the projectors can now be used to simplify Eq. (1.26) by simply contracting
it with either projector. The resulting scalar equation of motion for the induced photon beam
aind,p(k) is given by (cf Eq. (1.39))

k2aind,p(k) = −
∫

d4k′

(2π)4
Π̃p(k,−k′|B)ain,p(k

′), (2.3)

where the index p =‖,⊥ represents exactly those field configurations described in the parallel
and perpendicular case respectively. The incoming photon beam ain,p(k

′) can be chosen freely.
Limiting ourselves to the two-dimensional case as described above, Eq. (2.3) reduces to

(
k2
x − ω̃2

)
aind,p(ω, kx, ky) = −

∫
dk′x
2π

Π̃p(kx,−k′x, ky|B)ain,p(ω, k
′
x, ky), (2.4)

16
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β
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4x
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Figure 2.2.: The left figure shows a plot in arbitrary units of the possible values Bx, By, Bz > 0 of the
magnetic field B for a given incident photon wave vector k′ in the perpendicular case. The angle was
chosen as β = π/5. The magnetic field has to satisfy Eq. (2.2), which defines an area of possible magnetic
field directions. Note, however, that the absolute value of the magnetic field is not restricted. The figure
on the right side shows a plot of all possible values of the magnetic field components By and Bz for a
fixed value Bx = 2, again choosing β = π/5.

where the reduced frequency ω̃2 = ω2 − k2
y has been introduced. To increase the clarity of

notation, references to the conserved quantities ω and ky as well as the magnetic field B will be
mostly omitted in the future. We can now solve the remaining equation with the help of the
corresponding Green’s function G(x, x′) for the equation(

−∂2
x − ω̃2 − iε

)
G(x, x′) = δ(x− x′), (2.5)

or in momentum space (
k2
x − ω̃2 − iε

)
G(kx, k

′
x) = 2πδ(kx + k′x). (2.6)

Hence,

G(x, x′) =

∫
dkx
2π

∫
dk′x
2π

eikxx 2πδ(kx + k′x)

(kx − ω̃ − iε)(kx + ω̃ + iε)
eik
′
xx′

=

∫
dkx
2π

eikx(x−x′)

(kx − ω̃ − iε)(kx + ω̃ + iε)
,

(2.7)

and the integral can be solved by closing the contour in the upper plane for x − x′ > 0 and in
the lower plane for x− x′ < 0. Consequently,

G(x, x′) =
i

2ω̃

{
eiω̃(x−x′) for x− x′ > 0,

e−iω̃(x−x′) for x− x′ < 0.
(2.8)

The solution of Eq. (2.4) in position space is given by

aind,p(x) = −
∫
dx′ G(x, x′) jp(x

′) = −
∫
dx′
∫
dx′′ G(x, x′) Π̃p(x

′, x′′) ain,p(x
′′), (2.9)

where the symmetrized polarization tensor in position space,

Π̃p(x, x
′) =

1

2

[
Πp(x, x

′) + Πp(x
′, x)

]
, (2.10)
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CHAPTER 2. REFLECTION AT STATIC MAGNETIC FIELDS

has been introduced. Since the background field is time independent, it is sufficient to deal
exclusively with plane waves of fixed frequency ω and corresponding amplitude Ain,p. We now
restrict ourselves to incoming photons that are purely right-moving, i.e.

ain,p(x
′′) = Ain,p(ω̃)eik

′
xx′′ = Ain,p(ω̃)eiω̃x′′ , (2.11)

where we have made use of the light-cone condition k2 = 0, which has to hold far from the
inhomogeneity. Furthermore, we assume the probe photons to be emitted from the source at large
negative distances −L, where the magnetic field vanishes. As can be read off from the Green’s
function (2.8), the induced beam will consist of parts which are right-moving, i.e. transmitted,
and left-moving, i.e. reflected. At asymptotic distances, these will be the parts proportional to
eiω̃x and e−iω̃x respectively.
The reflected photons are assumed to be registered by a suitably placed detector spanning a

part of the y-z plane, which is located at a large negative distance x′′ < −L from the inhomogene-
ity. With regard to an actual experimental realization we have to bear in mind that an actual
detector must be of the same length scale as the inhomogeneity w. More precisely, for an incident
beam with angle β, the detector size in the y direction must be of the order of 2w tanβ. Here,
the inherent signal-background separation of the setup becomes obvious and thus the particular
suitability for experiments concerning QED effects, where only very small effects compared to
the classical behavior are expected. The separation is maintained, if the incidence angle remains
sufficiently small, i.e. β . π/2.
Implementing the above statements, the amplitude for the reflected photons is given by

aref,p(x < −L) = − i

2ω̃

∫ ∞
−L

dx′ jp(x
′)e−iω̃(x−x′)

= − i

2ω̃

∫ ∞
−L

dx′
∫ ∞
−∞

dx′′ Π̃p(x
′, x′′) ain,p(x

′′)e−iω̃(x−x′),

(2.12)

where we have chosen the lower line of the Green’s function (2.8). Specifying the incoming beam
to (2.11), the solution can be written as

aref,p(x < −L) = − i

2ω̃
Ain,p(ω̃)e−iω̃x

∫ ∞
−L

dx′
∫ ∞
−∞

dx′′eiω̃x′Π̃p(x
′, x′′)eiω̃x′′ =: Aref,p(ω̃;L)e−iω̃x.

(2.13)
We define the reflection coefficient R in analogy to the static, quantum mechanical case as
the squared ratio of the photon amplitudes of the reflected and incoming beam at asymptotic
distances, i.e.

Rp = lim
L→∞

∣∣∣∣Aref,p(ω̃;L)

Ain,p(ω̃)

∣∣∣∣2 . (2.14)

In our case, using the inverse Fourier transformation, we end up with the elegant and concise
expression

Rp =

∣∣∣∣∣Π̃p(−ω̃,−ω̃)

2ω̃

∣∣∣∣∣
2

. (2.15)

The label p should remind us of the fact that the reflection coefficient will in general differ for the
different polarization modes and scenarios under consideration. Thus, the general formula for
the reflection coefficient is given by the photon polarization tensor in momentum space evaluated
on the light-cone, i.e. kx = −ω̃ and k′x = −ω̃ and thus accounting for the transferred momentum
of 2ω̃ between reflected and incoming beam.
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2.1. THE DERIVATION OF THE REFLECTION COEFFICIENT

Transformation of the polarization tensor

The general strategy to include a one dimensional spatial dependence, which we choose w.l.o.g.
to be along the x direction, into (1.49) is illustrated by the following scheme,

Π̃µν(k′x) (2π) δ(kx + k′x)
F.T.−−→ Π̃µν(x− x′)

B→B(x)−−−−−→ Π̃µν(x, x′)
F.T.−1

−−−−→ Π̃µν(kx, k
′
x) . (2.16)

The polarization tensor for constant magnetic fields is momentum conserving. After a first partial
Fourier transformation (A.12) into position space it naturally depends only on the difference x−x′

due to the translational invariance of the considered problem. Now we substitute the constant
magnetic field B by a spatially inhomogeneous field B(x) and therefore translational invariance
is broken. Performing the inverse Fourier transformation, we end up with a polarization tensor
of the kind required in (1.22), which mediates between two distinct momenta kx and k′x. The
following argument motivates the simple substitution of B → B(x). First we note that in position
space the polarization tensor probes distances of about the Compton wavelength λc = 1/m of
the virtual particles. In our context, m ≈ 511 keV corresponds to the electron mass and therefore
λc ≈ 1.96 · 10−6eV−1 ≈ 3.9 · 10−13m. The magnetic field can be assumed to be locally constant
if the typical scale of variation w of the inhomogeneity is much larger than the virtual particles’
Compton wavelength. For strong laser fields in the optical region, w = O(1 eV) and therefore
this approximation is well justified.
Let us now implement the steps (2.16) outlined above. A partial Fourier transformation to

position space of (1.49) results in

Πµν(x− x′) =

∞∑
n=0

(eB)2n

∫
dkx
2π

Πµν
(2n)(−kx)eikx(x−x′). (2.17)

Substitution B → B(x) and subsequent transformation back to momentum space yields

Πµν(kx, k
′
x) =

∞∑
n=0

Πµν
(2n)(k

′
x)

∫
dx e−i(kx+k′x)x(eB(x))2n. (2.18)

Finally, we need to symmetrize in order to arrive at

Π̃µν(kx, k
′
x) =

1

2

∞∑
n=0

[
Πµν

(2n)(k
′
x) + Πµν

(2n)(kx)
] ∫

dx e−i(kx+k′x)x(eB(x))2n. (2.19)

Up to this point, no approximation (other than the one-loop-approximation) has been employed.
It is worth mentioning that the entire complication of the calculation of the reflection coefficient is
shifted to the evaluation of the photon polarization tensor in momentum space. There are certain
field inhomogeneities for which the procedure sketched in (2.16) can be performed explicitly. The
one-loop polarization tensor (1.40) carries its entire field strength dependence in the phase and
the Fourier transformation can, for instance, be expressed in terms of Gaussian integrals for an
inhomogeneity of the special form B(x) = 1/(1 + x2). However, a perturbative treatment as will
be performed in this work offers the possibility to study the effect of quantum reflection for a
wide range of different field profiles due to the simplicity of the resulting formulae, as will be
seen later.
We now have to evaluate the symmetrized polarization tensor (2.19) on the light-cone, i.e.

Π̃µν(−ω̃,−ω̃) =
1

2

∞∑
n=0

[
Πµν

(2n)(k
′
x = −ω̃) + Πµν

(2n)(kx = −ω̃)
] ∫

dx ei2ω̃x(eB(x))2n, (2.20)
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for the lowest orders. As can be seen from Eq. (1.50), the polarization tensor vanishes on the
light-cone for the lowest order n = 0. To evaluate the second order, n = 1, we rewrite (1.52).
Setting k2 = 0, the second order simplifies to

Πp,(2)(k) = − α

12π

∫ 1

0
dν

(1− ν2)2

m4

[{
− 2

1−ν2

1

}
k2
‖ +

{
1

5−ν2

2(1−ν2)

}
k2
⊥

]
, (2.21)

where we only concentrate on the relevant polarization modes p =‖,⊥. Note that no reflection
takes place for the zero-mode, since the polarization tensor is proportional to k2 at all orders (cf.
Eq. (1.40)). Now the angle θ = �(eB,k) is introduced, which puts the magnetic field direction
and the direction of photon propagation in relation. Then, k2

‖ = k2 cos2 θ − ω2, k2
⊥ = k2 sin2 θ

and evaluation of the ν-integral leads to

Πp,2(k2 = 0) = − α

45m4π
k2 sin2 θ

{
7
4

}
= − α

45m4π
ω2 sin2 θ

{
7
4

}
. (2.22)

Inserting this result into Eq. (2.20) and (2.15), the final result for the reflection coefficient to
lowest order is given by

Rp =

∣∣∣∣∣cpπ ω̃
∫
dx ei2ω̃x

(
eB(x)

m2

)2
∣∣∣∣∣
2

+O
(
( eB
m2 )6

)
, (2.23)

with {
c‖
c⊥

}
=

α

180

[
sin2 θ + sin2 θ′

] (ω
ω̃

)2
{

7
4

}
. (2.24)

The angles θ′ and θ refer to the angles between the magnetic field and the incoming and reflected
beam respectively. They can be related to each other in both the ‖ and ⊥ setting by means of
momentum conservation. In the former case, it turns out that both angles coincide, i.e. θ = θ′,
since the magnetic field may only have y and z components and hence

k ·B = kyBy = |k||B| cos θ = k′yBy = |k′||B| cos θ′ = |k||B| cos θ′. (2.25)

In contrast, the perpendicular case k⊥ · ex = 0 differs and the angles can be expressed by the
formulae (recall k′x = −kx)

cos θ′ =
−Bxkx +Byky
|B||k|

and cos θ =
Bxkx +Byky
|B||k|

. (2.26)

Remarkably, the magnetic field directions are not fixed in both the parallel setting as well as the
perpendicular setting. For the former setting there exists a configuration where the angles θ and
θ′ are independent of the incidence angle β. This is given if the magnetic field points into the z
direction.
The perpendicular case permits no such setups and the angles θ and θ′ are always dependent

upon the direction of incidence of the probe photons. For the special setting of eB = ex, θ and θ′

in the perpendicular case can be easily related to the angle β, in fact θ = β and θ′ = π−θ = π−β.
Therefore the terms sin θ = sin θ′ coincide and we can write

c⊥ =
2α

45
sin2 β

(ω
ω̃

)2
. (2.27)
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From the constraint (2.2) we observe that for β → 0 the only non-trivial case (i.e. B 6= 0)
fulfilling the requirement of the perpendicular case is exactly given for eB = ex.
Equation (2.23) can now be evaluated for different magnetic field inhomogeneities B(x). It

is particularly simple to calculate the reflection coefficient in our case as it only requires a
Fourier transformation of the squared magnetic field. However, the first contributing term to
Rp is already of the order of (B/Bcr)

4 and thus expected to be rather small. A major task will
consist of finding suitable and experimentally feasible beam profiles, which maximize the effect
of reflection.
The derivation of R as performed in this chapter is not valid for arbitrary incidence angles β,

but must be restricted to angles β < π/2. First of all, the case β = π/2 obviously does not make
sense in our treatment. However, one even has to be careful for angles β → π/2. The physical
intuitive reason can be given by the fact that, for such angles, the incident photon beam is
exposed to the inhomogeneity over a large distance. The artificial splitting, as it was performed
in our derivation, of the photon vector field a(k) into an independent incoming field ain(k′) and
an induced field aind(k) cannot be performed anymore (cf. the step from Eq. (1.22) to (1.26) ).
Such a splitting corresponds to neglecting the field’s own back reaction. As a result, the reflection
coefficient as derived in Eq. (2.15) is not valid anymore for ω̃ → 0 and will eventually diverge
for ω̃ = 0. The quantum mechanical derivation in the next section will offer a more quantitative
treatment of this limitation.

2.2. Quantum mechanical analogy

There exists an alternative way to derive the formula for the reflection coefficient (2.23) which
employs the similarity to one dimensional scattering problems in ordinary quantum mechanics.
A first hint that such a derivation might be possible is given by the similarity of Eq. (2.23)
with scattering formulae derived within the Born approximation. As a first step, we derive a
Schrödinger-like equation of motion for photons in the presence of a weak magnetic field, spe-
cializing to “on the light-cone” dynamics. We perform a Fourier transformation of this equation
into position space and solve the resulting one dimensional scattering problem in the transfer
matrix formalism. The specialization to the light-cone is permissible since we have seen in the
last section that basically the entire dynamics of the problem are described by the evaluation of
the polarization tensor for k2 = 0. Note, however, that if we did not have any knowledge about
the true solution, there would be no striking reason to make such an assumption beforehand.
Still, it seems quite enlightening to show this alternative derivation nonetheless.

2.2.1. Equation of motion

In order to derive a Schrödinger-type equation of a propagating photon, we start with Eq. (2.3),
where we do not distinguish between incoming and induced photon. We now impose momentum
conservation (2π)4δ(k + k′) on the photon polarization tensor and evaluate it on the light cone
by employing the representation (2.22). Only keeping terms to the lowest non-trivial order
(eB/m2)2, we arrive at the equation of motion in momentum space,[

k2 − 2ω̃2 cp
π

(
eB

m2

)2
]
ap(k) = 0, (2.28)
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and, following the above mentioned reasoning, a Fourier transformation to position space results
in [

− d2

dx2
− ω̃2

(
1 + 2

cp
π

(
eB

m2

)2
)]

ap(x, ky, ω) = 0. (2.29)

We now perform the replacement to an inhomogeneous magnetic field B→ B(x). Then Equation
(2.29) can be interpreted as a Schrödinger equation for the photon wave function ap(x, ky, ω) in
the spatially localized potential

V (x) = −2
cp
π
ω̃2

(
eB(x)

m2

)2

(2.30)

with the corresponding energy eigenvalue E = ω̃2. Note that the ambiguity of ω̃2 = k2
x, which

arises when writing down the polarization tensor (2.22) and transforming Eq. (2.28) into position
space, does not affect the result Eq. (2.29) due to our weak field approximation.

2.2.2. The quantum mechanical reflection coefficient for a smooth potential

V (x)

x

eikxx

re−ikxx

teikxx

Figure 2.3.: One-dimensional above-barrier scattering in
ordinary quantum mechanics for a smooth, spatially local-
ized potential V (x). The incident, normalized plane wave
is given by exp(ikxx) for asymptotic distances x → −∞.
The reflected part of the wave is asymptotically given by
r exp(−ikxx), where r = r(x → −∞) denotes the reflec-
tion amplitude. The transmission amplitude is given by
t = t(x→∞).

tn+1e
ikn+1x

rn+1e
−ikn+1x

tne
iknx

rne
−iknx

Vn+1

Vn

xn+1 xn+2

ε

Figure 2.4.: Discretization of the
smooth potential V (x) into segments of
even length ε with a constant value of
the potential Vn = V (xn). The problem
reduces to the case of determining the
reflection and transition amplitudes rn
and tn for a step potential.

We derive a formula for the calculation of the quantum mechanical reflection coefficient for above-
barrier scattering in one dimension. The strategy is to first substitute the smooth, but otherwise
arbitrary potential V (x) by a piecewise continuous potential Vn for x ∈ (nε, (n+1)ε) and compute
the reflection for the potential step Vn → Vn+1 up to the first order in ε (cf. Figs. 2.3 and 2.4).
At the end we retrieve our original problem by considering the limit ε → 0. This method is
completely analogous to the transfer matrix approach known from optics. Using the plane wave
solutions of the Schrödinger equation in a constant potential and furthermore employing the
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2.2. QUANTUM MECHANICAL ANALOGY

matching conditions concerning the field and its first derivative, the following equations have to
hold,

tne
iknxn+1 + rne

−iknxn+1 = tn+1e
ikn+1xn+1 + rn+1e

−ikn+1xn+1 ,

kn(tne
iknxn+1 + rne

−iknxn+1) = kn+1(tn+1e
ikn+1xn+1 + rn+1e

−ikn+1xn+1).
(2.31)

The coefficients tn and rn represent the amplitude for transmission and reflection respectively
at the corresponding n-th potential step and kn =

√
E − Vn is the constant wave vector for the

propagation from xn = nε to xn+1 = (n + 1)ε. Equation (2.31) can be cast into the following
form, (

tn
rn

)
=

(
1
2(1 + kn+1

kn
)ei(kn+1−kn)xn+1 1

2(1− kn+1

kn
)e−i(kn+1+kn)xn+1

1
2(1− kn+1

kn
)ei(kn+1+kn)xn+1 1

2(1 + kn+1

kn
)e−i(kn+1−kn)xn+1

)(
tn+1

rn+1

)
, (2.32)

and taking the limit ε→ 0 we get(
t(x)
r(x)

)
≈
(

1 + (ixk′ + 1
2kk
′)ε −e−i2kx 1

2kk
′ε

−ei2kx 1
2kk
′ε 1 + (−ixk′ + 1

2kk
′)ε

)(
t(x + ε)
r(x + ε)

)
, (2.33)

where k = k(x) =
√
E − V (x) and k′ = (d/dx)k(x). Here, the limitation to smooth potentials

ensures that k′ is finite. Due to the special structure of the matrix in Eq. (2.33), the relation(
1 + aε bε
cε 1 + dε

)(
1 + a′ε b′ε
c′ε 1 + d′ε

)
=

(
1 + (a+ a′)ε (b+ b′)ε

(c+ c′)ε 1 + (d+ d′)ε

)
(2.34)

holds and thus we arrive at(
t(x)
r(x)

)
=

(
1 +

∫ y
x dx̃( k

′

2k + ix̃k′) −
∫ y

x dx̃ e−i2kx̃ k′

2k

−
∫ y

x dx̃ ei2kx̃ k′

2k 1 +
∫ y

x dx̃( k
′

2k − ix̃k
′)

)(
t(y)
r(y)

)
. (2.35)

Now we make use of the requirement that the potential has to vanish quickly enough at |x| → ∞.
Then we can assume that there will not be any reflected part to the right of the inhomogeneity,
i.e. r(y→∞) = 0. The amplitude for the reflection then reduces to

r(x) = −
[∫ ∞

x
dx̃ ei2kx̃ k

′

2k

]
t(y→∞). (2.36)

The first line of Eq. (2.35) reduces to

t(x→ −∞) =

[
1 +

∫ ∞
−∞

dx̃(
k′

2k
+ ix̃k′)

]
t(y→∞). (2.37)

For a normalized incident wave, i.e. t(x → −∞) = 1, we can eliminate t(y → ∞) from Eq.
(2.36) to arrive at

r(x→ −∞) = −
[∫ ∞
−∞

dx̃ ei2kx̃ k
′

2k

] [
1 +

∫ ∞
−∞

dx̃(
k′

2k
+ ix̃k′)

]−1

. (2.38)

The reflection coefficient R = |r(x→ −∞)|2 relates the intensities and is therefore given by

R =

∣∣∣∣∣
∫∞
−∞ dx e2ikx k′

2k

1 +
∫∞
−∞ dx

(
k′

2k + ixk′
)∣∣∣∣∣

2

. (2.39)

The transmission coefficient T reads

T =

∣∣∣∣∣ 1

1 +
∫∞
−∞ dx

(
k′

2k + ixk′
)∣∣∣∣∣

2

. (2.40)
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Weak field approximation

The quantum mechanical reflection coefficient can now be brought in direct agreement with Eq.
(2.23). First, we note that in the case of small magnetic fields

k(x) = ω̃

√
1 + 2

cp
π

(
eB(x)

m2

)2

= ω̃

(
1 +

cp
π

(
eB(x)

m2

)2

+O
(
( eB
m2 )4

))
(2.41)

and

k′ = 2ω̃
cp
π

e2

m4
B(x) ·B′(x) +O

(
( eB
m2 )4

)
,

k′

2k
= ω̃

cp
π

e2

m4
B(x) ·B′(x) +O

(
( eB
m2 )4

)
. (2.42)

Plugging these formulae into the reflection coefficient R and performing the same weak field
expansion, i.e. keeping only terms up to (eB/m2)2, the denominator simplifies to 1 and we
arrive at

R =

∣∣∣∣∫ ∞
−∞

dx ei2ω̃xω̃
cp
π

e2

m4
B(x) ·B′(x)

∣∣∣∣2 +O
(
( eB
m2 )6

)
=

∣∣∣∣∣cpπ ω̃
∫
dx ei2ω̃x

(
eB(x)

m2

)2
∣∣∣∣∣
2

+O
(
( eB
m2 )6

)
,

(2.43)

where a partial integration has been performed and the boundary term vanishes due to the
requirement B(|x| → ∞) = 0. The derivation is only valid for smooth, localized beam profiles
which, however, is completely compatible with our requirement that the inhomogeneity may
only vary on length scales much larger than the Compton wavelength. Furthermore, the weak
field expansions (2.41), (2.42) and the subsequent simplification of the Eq. (2.39) can only be
performed for

2
cp
π

(
eB

m2

)2

� 1 ⇐⇒ Rp � 1. (2.44)

This condition, however, is violated for incidence angles β → π/2, since ω̃ → 0 and consequently
cp → ∞. Equation (2.44) may thus be regarded as a subsequent quantification of the validity
range of R as a function of the angle β and therefore also serves as a measure of when the
splitting, as it was performed in Eq. (1.26), of the photon vector field into incoming and induced
beam fails. It becomes apparent that such a splitting corresponds to a loop expansion as well
and since we are only interested in lowest order effects, we have to neglect back reactions of the
photon field onto itself.

2.3. Evaluation of R for different beam profiles

In this section, we take a closer look at some special beam profiles in order to obtain first
magnitude estimates for the effect of quantum reflection and secondly to enhance the effect by a
suitable choice of magnetic beam profiles.

2.3.1. Experimental setup

The experimental setup is given by an all optics pump-probe setup, whose basics were already
described by Fig. 2.1. The lowest order of the reflection coefficient scales with (B/Bcr)

4, which
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2.3. EVALUATION OF R FOR DIFFERENT BEAM PROFILES

leads us to turn our attention to high intensity laser systems. These are at present the only
systems capable of achieving field strengths which are sufficiently large for our purposes. Thus,
we consider the background magnetic field B(x) = B(x)eB to be generated in the focal spot of a
pump-laser with wavelength λpump. A purely magnetic field in the focal spot could be generated
at least to a good approximation by superimposing two counter-propagating laser beams [29].
The probe laser with wavelength λprobe hits the focal spot at an angle β and the amount of
reflected photons is measured by a suitably placed detector.
Laser beams are usually characterized by the beam parameters λ, E and τ . The laser wave-

length λ corresponds to the photon energy ω via ω = 2π/λ. E denotes the pulse energy of
the laser pulse and τ its duration. The maximum field strength in the focus-cross section area
σ = π(d/2)2 is related to the intensity I = E/(τσ) via B =

√
2I. Laser beams are usually well

described by Gaussian beams and therefore the effective focus cross section area σ is assumed
to contain 86% of the beam energy. The waist spot size w0 = d/2 characterizes the distance
from the focal spot where the intensity dropped to 1/e2 of its maximum value. Since we are only
interested in obtaining first estimates, we will also apply this rule for shapes of the inhomogeneity
which differ from the Gaussian transverse profile and will be examined later. Laser beams cannot
be focused down to an arbitrary small focal spot, but are restricted by the diffraction limit. The
minimal beam diameter is given by d = 2f#λ, where f# denotes the so called f-number which
can be as low as f# = 1, see [30] and [25]. Hence, for given laser parameters, the maximum field
strength B can be approximated according to

B ≈

√
0.86

2

π

E
τ w2

0

≈

√
0.86

2

π

E
τ f#λ2

. (2.45)

In all future discussions we will assume f# = 1. The number of photons Nin contained in the
laser pulse can be approximated by

Nin ≈
E
ω
. (2.46)

The number of reflected photons per shot can be calculated according to

Np,ref = RpfintNin. (2.47)

We introduced a factor fint = Min
{

1,
τpump

τprobe

}
being a first estimate of the fraction of incident

probe photons interacting with the magnetic background field for the case of τpump < τprobe.
To calculate explicit numerical values, we adopt the design parameters of the two high-intensity

laser systems POLARIS and JETI200 currently under development and soon-to-be available in
Jena [31]. The list below gives an overview of the important parameters:

Design Parameters POLARIS @ Jena

λ = w0 = 1035 nm = 5.25 eV−1 (2.48)

B = 1.46 · 106 T = 2.86 · 108 eV2 (2.49)
ω = 1.821 PHz = 1.20 eV (2.50)

E = 150 J = 9.36 · 1020 eV (2.51)

Nin = 7.8 · 1020 Photons per shot (2.52)

τ = 150 fs = 228 eV−1 (2.53)
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Design Parameters JETI200 @ Jena

λ = w0 = 800 nm = 4.06 eV−1 (2.54)

B = 0.84 · 106 T = 1.65 · 108 eV2 (2.55)
ω = 2.36 PHz = 1.55 eV (2.56)

E = 4 J = 2.50 · 1019 eV (2.57)

Nin = 1.61 · 1019 Photons per shot (2.58)

τ = 20 fs = 30.4 eV−1 (2.59)

Let us mention that although neither of these two laser systems has currently reached its re-
spective stage of completion, similar systems have been realized experimentally. As an example,
let us take the BERKELEY LAB LASER ACCELERATOR (BELLA), a petawatt laser system
which, as of August 2012, achieved to generate 40 fs-pulses with a compressed energy of E = 42 J
at a repetition rate of 1 Hz (see [32] and [33]). A long term prospect for future examinations
of quantum vacuum effects is given by the “Extreme light infrastructure” (ELI) currently in its
planning stage, which aspires to achieve laser powers of P = 200 PW (cf. [34]).
The experimental setting, as described in this section, of course clearly violates both the re-

quirement of time independency as well as homogeneity of the magnetic field in the longitudinal
direction, i.e. the y-direction. The time scale of the temporal variation of the magnetic field is of
approximately the same order as the time needed for the probe beam to cross the region of the
inhomogeneity. More precisely, the probe beam needs about t ≈ 2w0/c ≈ 2λ/c to traverse the
inhomogeneity, which already corresponds to two temporal cycles of the pump laser field. The
only scenario where the assumption of stationarity could be considered a valid approximation
is the case of focusing far below the diffraction limit, i.e. f# < 1. A special setup, where such
strong focussing is at least theoretically conceivable, will be examined in more detail below. In
any case, the longitudinal profile for generic laser beams can generally not be considered to be
constant either, which plays a role for probe beams with ky 6= 0. These remarks should make
it clear that any results obtained in this chapter have to be regarded as first estimates and that
for properly investigating realistic laser scenarios, the temporal dependency has to be taken into
account as well. One might wonder whether a setup similar to the PVLAS experiment ([12] and
[35]), aimed at detecting magnetic vacuum birefringence, could be feasible. Here, a static mag-
netic field of about B = 5 T, shining through a 1m Fabry-Perot cavity of high finesse, is generated
by rotating dipole magnets. The photon probe laser beam runs through the cavity about 105

times and thus the nonlinear effects are increased by this factor. Such a setup is arguably closer
to our theoretical treatment. However, due to the extremely small factor of (B/Bcr)

4, the effect
of reflection will be magnitudes smaller than with a laser-laser setting. Furthermore, the inherent
signal-background separation is lost and the induced quantum vacuum signature, in this case
reflected photons which are of same frequency as the ingoing probe photons, would have to be
isolated from the comparatively enormous background signal. A last point which argues against
such a setting is given by the rather large length scale of the field strength variation, which can
be realized in static configurations. Reflection inherently requires inhomogeneous profiles and
shorter scales of spatial variation likely increase the effect, as is known from ordinary quantum
mechanics.

We can now combine the two lasers POLARIS and JETI200 in several ways according to our
experimental layout: The POLARIS laser is employed as the pump laser and the JETI200 laser
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serves as the probe beam (Setup (a)) or vice versa (Setup (b)). To relate the laser parameters
for the different setups to the quantities contained in the formula for the reflection coefficient R,
Eq. (2.23), they are listed below:

Setup (a) POLARIS: Background beam, JETI200: Probe beam

B = 2.86 · 108eV2,

w0 = 5.25eV−1,

ω = 1.55eV,

Nin = 1, 61 · 1019 Photons per shot,
fint = 1,

(2.60)

Setup (b) POLARIS: Probe beam, JETI200: Background beam

B = 1.65 · 108eV2,

w0 = 4.06eV−1,

ω = 1.20eV,

Nin = 7.8 · 1020 Photons per shot,
fint = 0.13 .

(2.61)

It is already safe to assume that in most cases Setup (a) will yield higher reflection rates due to
the greater maximum field amplitude B. For the sake of completeness, let us state the numerical
value for the remaining constant Cp := e2/(πm4)cp occurring in Eq. (2.23) as well. With the
fine structure constant α = 1/137, the electron charge e =

√
4πα = 0.303, the electron mass

m = 5.11 · 105 eV and the reduced frequency

ω̃2 = ω2 − k2
y = ω2 − ω2 sin2 β = ω2 cos2 β, (2.62)

Cp evaluates to

Cp =

{
C‖
C⊥

}
=

α

180

e2

πm4

[
sin2 θ + sin2 θ′

]
cos2 β

{
7
4

}
=

[
sin2 θ + sin2 θ′

]
cos2 β

1.74 · 10−29

{
7
4

}
eV−4,

(2.63)
which stills depends on the angles θ, θ′ and β. The reflection coefficient can then be written to
the lowest order as

Rp =

∣∣∣∣Cpω̃ ∫ ∞
−∞

dx ei2ω̃xB2(x)

∣∣∣∣2 . (2.64)

Finally, the restriction on the incidence angle β, Eq. (2.44), evaluates for the different setups to

Setup (a):
{

7
4

}
· 2.85 · 10−12 � cos2 β[

sin2 θ + sin2 θ′
] −→ 6.3 · 10−6 � cosβ,

Setup (a):
{

7
4

}
· 9.47 · 10−13 � cos2 β[

sin2 θ + sin2 θ′
] −→ 3.6 · 10−6 � cosβ.

(2.65)

Thus, practically all angles of physical relevance can be dealt with within our approximation. In
the investigations to follow, we always implicitly assume the “one” background beam to consist
of two superimposed counter-propagating laser beams which approximately cancel the electric
field.
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2.3.2. Case 1: Lorentz profile

To begin with, we investigate a symmetric Lorentz-shaped inhomogeneity of the form

B(x) =
B

1 +
(

x
w0

)2 , (2.66)

whose profile is solely characterized by the full width at half maximum (FWHM) given by w0

(cf. the remark in the previous section) and the maximum field strength B. The Lorentz profile
is a representative of power-like decreasing fields for large values of |x|, in this case

B(x) ∼ B
(

x

w0

)−2

as |x| → ∞. (2.67)

The reflection coefficient R according to Eq. (2.64) is then given by

Rp =
∣∣∣π
2
CpB

2 ω̃w0(1 + 2ω̃w0)e−2ω̃w0

∣∣∣2 . (2.68)

We see that in addition to the smallness of the parameter CpB2, the coefficient is exponentially
suppressed with 2ω̃w0. Clearly, increasing the incidence angle β → π/2 leads to a diverging
reflection coefficient, since the exponential suppression can be overcome and the overall factor of
1/ cos2 β dominates. This agrees well with the discussion of the validity of R in the last sections.
The reflection coefficient increases monotonically for increasing angle β. For a given angle of β,
the maximum of R is given for (ω̃w0)max = 1+

√
5

4 . However, the values of w0 and ω are generally
fixed by the laser parameters. A plot of the profile and the w0ω̃ dependence is given in Fig. 2.5
and 2.6 respectively.

2.3.3. Case 2: Exponential profiles

Exponential profiles of the form

B(x) =
B

cosh
(

x
w0

) , B(x) =
B

cosh2
(

x
w0

) , . . . , (2.69)

are as well characterized by the single parameter w0 being a measure for its width. It is related
to the FWHM via w0 arcosh n

√
2 for a given order n. The asymptotic behavior is exponential, i.e.

B(x) ∼ B 2ne
−n |x|

w0 as |x| → ∞. (2.70)

The reflection coefficients for those field inhomogeneities are given by

Rp =

∣∣∣∣2πCpB2 ω̃2w2
0

sinh(πω̃w0)

∣∣∣∣2 , Rp =

∣∣∣∣4π3 CpB
2 ω̃

2w2
0(1 + ω̃2w2

0)

sinh(πω̃w0)

∣∣∣∣2 , . . . , (2.71)

which again only depend on the quantity ω̃w0 and are exponentially suppressed. Each order
of n results in one more quadratic polynomial factor to the polynomial in the numerator. The
dependence on the angle β and on ω̃w0 for each order is similar the behavior observed for the
Lorentz profile, as can be seen in Fig. 2.6.
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2.3.4. Case 3: Gaussian profile

Another example of an exponential profile characterized by a single parameter is given by the
Gaussian profile

B(x) = B e
−
(

x
w0

)2

. (2.72)

The parameter w0 describes the width at which the pulse has dropped to 1/e2 of its peak intensity,
which is related to the FWHM via w0

√
ln 2. The reflection coefficient evaluates to

Rp =

∣∣∣∣√π

2
CpB

2ω̃w0e
− 1

2
(ω̃w0)2

∣∣∣∣2 . (2.73)

In contrast to the two previously treated examples, reflection is exponentially suppressed with
(1/2)(ω̃w0)2. This time, the maximum of R for a given angle β is given by (ω̃w0)max = 1.

2.3.5. Plots of the cases and numerical values

We now numerically evaluate the three cases treated above in order to get first estimates of
the magnitude of the effect of quantum reflection. We make use of the two setups described in
Section 2.3.1. As was mentioned at the end of Sect. (2.1), the angles θ and θ′ in the parallel
case can be independent of the incidence angle β for the special setting eB = ez. However, for
the perpendicular case we make the observation that (cf. Eq.(2.27) )

R⊥ ∼ β2 as β → 0, (2.74)

i.e. the reflection coefficient always approaches zero.

Lorentz
Exponential n=1
Exponential n=2

B(x)
B

Gauss

1.0

0.8

0.6

0.4

0.2

−4 −2 0 2 4
x/w0

Figure 2.5.: Plot of the normalized magnetic field strength B(x)/B for the cases 1 to 3 described above.

Figure 2.5 shows a plot of the four inhomogeneities for equal FWHM and Fig. 2.6 a plot
of the resulting reduced reflection coefficient Rp/(C2

pπ
2B4) for a fixed angle of β. The field

profiles considered so far are very similar in shape and therefore it is not surprising that the
value of Rp is of the same order and shows the same basic dependencies in all cases. Among
this class of profiles, the Gaussian type yields the highest reflection rate if the laser parameters
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Figure 2.6.: Plot of the reduced (dimensionless) reflection coefficients Rp/(π
2C2

pB
4) for the different

inhomogeneity profiles of the cases 1 to 3. The angle β is considered fixed and the coefficient then
depends solely on the combination ωw0.

match the maximum condition. The plot may be a little misleading due to the impression it
gives that by adjusting the incidence angle β to achieve ω̃w0 = (ω̃w0)max, we have reached the
highest possible reflection rate. However, it is important to remember that the reduced reflection
coefficient Rp/(C2

pπ
2B4) depends on β via Cp. Instead, Rp is a monotonically increasing function

of β = 0 . . . π/2 and eventually diverges, as was argued above. Figure 2.7 illustrates the point
by plotting Rp/(C2

pπ
2B4 cos4 β) as a function of β for the different cases, choosing the value

ωw0 = 8.14, corresponding to the Setup (a). Keep in mind that in general the angles θ and θ′

still depend on β and in particular the reflection approaches zero for the perpendicular case, as
was argued above.
The above plots already show that the effect of reflection is rather small. Let us exemplarily
calculate some values for Rp and the number of reflected photons Np choosing rather high angles
of β = 82.9° (Setup a) and β = 78.2° (Setup b). Since the profiles are nearly identical, we
limit ourselves to the case of the Gaussian shape and then the chosen angles fulfill exactly the
matching condition. Employing Eq. (2.73) and (2.47), the result is given by

Setup (a): Rp =
[
sin2 θ + sin2 θ′

]2 · 5.1 · 10−21

{
49
16

}
, (2.75)

Np =
[
sin2 θ + sin2 θ′

]2{4.1
1.3

}
, (2.76)

Setup (b): Rp =
[
sin2 θ + sin2 θ′

]2 · 7.3 · 10−23

{
49
16

}
, (2.77)

Np =
[
sin2 θ + sin2 θ′

]2{0.36
0.12

}
. (2.78)

As expected, the reflection is lower for Setup (b) due to the lower magnetic field strength, al-
though in this case it is partly outweighed by the higher number of incoming photons Nin. Those
reflection rates should be considered upper bounds, since an experimental realization is unlikely
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Figure 2.7.: Logarithmic plot of the reduced (dimensionless) reflection coefficients Rp/(π
2C2

pB
4 cos4 β)

as a function of β for the different inhomogeneity profiles of the cases 1 to 3. All functions are monotonous
in β and at β = π/2 the reflection coefficients diverge. The value of ωw0 = 8.14 was chosen according to
setup (a).

to achieve the assumed precision in superimposing the laser beams. Nevertheless, the number
of reflected photons is already quite sizable, especially if compared to other signatures of the
electrodynamic quantum vacuum.

2.3.6. Modulated Gaussian inhomogeneity

The first four magnetic fields under consideration were only dependent on ωw0, and the angle β
provided the only handle to increase the effect. Sizable effects, however, could only be achieved for
rather large angles, as was shown in Fig. 2.7. Such a setting, while theoretically devisable, leads
to complications on the experimental side. Generating a clear superposition of the laser beams
over a long longitudinal distance in order to cancel out the electric field is hardly possible and
furthermore, for very large angles the clear signal-background separation gets lost. Furthermore,
if the background beam is treated as a Gaussian beam, the assumption of a constant beam radius
in the longitudinal direction gradually looses validity for increasing angles. A more quantitative
discussion of this aspect is given in the appendix B.
In this section, we strive to achieve reflection effects of the same order, while requiring smaller

angles at the same time. The way to accomplish this goal is by introducing modulated inho-
mogeneities characterized by a modulation length λm. In principle, we could use each of the
previous profiles to modify by the modulation. However, results can be expected to be quite
similar. Therefore, we only treat the Gaussian profile as a generic case in the upcoming ex-
amples. Laser beams are generally well described by Gaussian beams, whose transverse profile
in the focus is indeed given by a Gaussian envelope and therefore justifies our choice. A short
overview of Gaussian beams is given in appendix B.
The profile under investigation is given by

B(x) = Be
−
(

x
w0

)2

cos(ωmx + ϕ), (2.79)
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with the modulation frequency ωm = 2π/λm and an additional phase ϕ. The reflection coefficient
Rp can be computed straightforwardly in terms of Gaussian integrals and is given by

Rp =

∣∣∣∣14
√
π

2
CpB

2ω̃w0

(
2e−

1
2
w2

0ω̃
2

+ e−
1
2
w2

0(ω̃+ωm)2+2iϕ + e−
1
2
w2

0(ω̃−ωm)2−2iϕ
)∣∣∣∣2 . (2.80)

For ωm = ϕ = 0 the equations (2.79) and (2.80) reduce to their respective forms of case 3. Again,
we encounter the exponential suppression already observed in the last cases. However, this time
the modulation frequency adds the possibility to overcome said suppression by matching ω̃ = ωm,
which can be achieved by combined means of adjusting the angle and the modulation. Realistic
laser parameters as given by our setups (a) and (b) yield rather large values for ω̃w0 and ωmw0

and for these instances Rp is well approximated by

Rp =

∣∣∣∣14
√
π

2
CpB

2ω̃w0e
− 1

2
w2

0(ω̃−ωm)2

∣∣∣∣2 , (2.81)

which does not depend on the phase ϕ anymore. There are now several ways to experimentally
achieve such a transverse modulation within our stationary approximation.

Parallelly propagating laser beams

A first idea to realize such a modulation includes two identical Gaussian laser beams, which are
propagating parallelly in the y direction (see [28]). If their respective beam axes are, within their
focal parameters, a distance of λpump apart and they furthermore possess a relative phase shift of
λpump/2 leading to magnetic fields pointing in opposite directions in the focus, then the resulting
transverse profile will approximately exhibit a structure close to Eq. (2.79) with λm = 2λpump,
φ = π/2 and a width of w0 = 2λpump. A plot of the magnetic field for the two setups (a) and (b)
is shown in Fig. 2.10 in Subsection 2.3.8. Given such a setup and fixed parameters, the function
Rp(β) now shows a different behavior as can be observed in Fig. 2.8.

Setup (a)
Setup (b)

0.001

10−11

10−19

10−27

10−35

Rp

π2C2
pB

4 cos4 β

0.5 1.0 1.5

β

Figure 2.8.: Logarithmic plot of the normalized reflection coefficients Rp/(π
2C2

pB
4 cos4 β) as a function

of β for the case of an exponential inhomogeneity with a modulation frequency ωm. The plot shows the two
different setups under investigation. One can see the respective maxima at βmax ≈ arccos(0.49λ/λpump)
and the minima at βmin ≈ arccos(0.013λ/λpump). For β → π/2, the reflection coefficient diverges.
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The extreme points of the function Rp(β) as in Eq. (2.81) for β ∈ [0, π/2 ) are given by

(cosβ)1/2 =
ωm
2ω

(
1±

√
1− 4

(ωmw0)2

)
=

λ

λpump

1

4

(
1±

√
1− 4

(2π)2

)
, (2.82)

where λ denotes the wave length of the probe beam. The positive sign corresponds to a local
maximum, while the negative sign denotes a local minimum. For β → π/2, the coefficient is
again divergent. The modulation now permits us to achieve reflection rates of almost the same
order as in the previous cases, albeit at lower angles, by adjusting β = βmax. The resulting,
maximizing angles for the setups are then given by

Setup (a): βmax ≈ 67.9° and Setup (b): βmax ≈ 50.9°. (2.83)

Keep in mind that these angles are only estimates since the θ and θ′ dependency on β has not
been taken into account. The reflection rates and the reflected number of photons are an order
lower than for the previously treated cases, i.e.

Setup (a): Rp =
[
sin2 θ + sin2 θ′

]2 · 3.6 · 10−22

{
49
16

}
, (2.84)

Np =
[
sin2 θ + sin2 θ′

]2{ 0.29
0.093

}
, (2.85)

Setup (b): Rp =
[
sin2 θ + sin2 θ′

]2 · 5.2 · 10−24

{
49
16

}
, (2.86)

Np =
[
sin2 θ + sin2 θ′

]2{ 0.026
0.0084

}
. (2.87)

Crossed field configuration

Another way to achieve a modulating frequency ωm is illustrated in Fig. 2.9: The probe beam
travels strictly along the x axis. The background beam is split into two identical laser beams with
respective magnetic fields B1(x, y) and B2(x, y), which are restricted to the x-y plane and whose
focal points meet at the origin. Beam 1 is directed at an angle δ with respect to the x axis, while
beam 2 is directed at an angle −δ. Both laser beams are assumed to be standing plane waves
with wavelength λm along their respective directions ei, while their transversal shape (directions
ei,⊥) is again characterized by a Gaussian profile of width 2w0. Each beam thus has the form

Bi(x, y) =
B

2
exp

[
−
(
r · ei,⊥
w0

)2
]

cos(ωmr · ei + ϕi) (2.88)

with

e1 = cos δ ex + sin δ ey, e1,⊥ = − sin δ ex + cos δ ey, (2.89)
e2 = cos δ ex − sin δ ey, e2,⊥ = sin δ ex + cos δ ey, (2.90)

where φi denotes an arbitrary phase and r = x ex + y ey. The problem reduces to a one-
dimensional one and can be handled like before if we confine ourselves to the x axis. The
magnetic field then reduces to

B(x, y = 0) =
B

2
e
− x2

w2
0

sin2 δ
[cos(ωmx cos δ + ϕ1) + cos(ωmx cos δ + ϕ2)] (2.91)
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e1,⊥

e2

e2,⊥

B1(x, y)

B2(x, y)

δ
ain(x)

y

x

Figure 2.9.: The setup of the crossed fields configuration. The background beam is split into two identical
beams in the x-y plane with angles ±δ with respect to the x axis. The problem is reduced to a one
dimensional task by considering only the x axis.

and the corresponding reflection coefficient is given by

Rp =

∣∣∣∣∣14
√
π

2
CpB

2 ωw0

sin δ
cos2

[
1

2
(ϕ1 + ϕ2)

]
[
2e−

1
2(ωw0

sin δ )
2

+ e−
1
2( w0

sin δ )
2
(ω−ωm cos δ)2−i(ϕ1+ϕ2) + e−

1
2( w0

sin δ )
2
(ω+ωm cos δ)2+i(ϕ1+ϕ2)

]∣∣∣∣∣
2

. (2.92)

The result resembles the one from Eq. (2.80), but this time the dependency on the angle δ is
different than the one on β from the previous cases. First of all, let us note that for δ = 90°
and ϕ1 = ϕ2 = 0, Rp reduces to that of case 3, Eq. (2.71). Secondly, the reflection coefficient
depends of course on the relative phases of the background beams: A maximum is given for
ϕ1 + ϕ2 = 2πk with k ∈ Z and it is zero for ϕ1 + ϕ2 = (2k + 1)π, since destructive interference
causes the magnetic field to vanish. For our future discussion, we will assume the maximum
possible value, i.e. ϕ1 + ϕ2 = 0. For

ω − ωm cos δ << ω, (2.93)

which is fulfilled for our laser parameters if the angle δ is sufficiently small, we can again simplify
Eq. (2.92) to yield

Rp =

∣∣∣∣∣14
√
π

2
CpB

2 ωw0

sin δ
e−

1
2( w0

sin δ )
2
(ω−ωm cos δ)2

∣∣∣∣∣
2

. (2.94)

The matching condition to achieve maximum reflection is given by the cubic equation in cos δ,

− cos δ(1− cos2 δ) = w2
0(1− ωm cos δ)(1− ω cos δ). (2.95)
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Since the LHS of (2.95) is smaller than zero, the maximum we are interested in must be located
in cos δ ∈

(
Min

(
ω
ωm
, ωmω

)
, 1
)
. The real root of such cubic equations can be conveniently found

numerically. The result for the two setups under consideration reads

Setup (a): δmax ≈ 38.2° and Setup (b): δmax ≈ 37.5°. (2.96)

The result for the reflection coefficient and the number of reflected photons is

Setup (a): Rp =
[
sin2 θ + sin2 θ′

]2 · 1.0 · 10−34

{
49
16

}
, (2.97)

Np =
[
sin2 θ + sin2 θ′

]2 · 10−14

{
7.9
2.6

}
, (2.98)

Setup (b): Rp =
[
sin2 θ + sin2 θ′

]2 · 1.4 · 10−24

{
49
16

}
, (2.99)

Np =
[
sin2 θ + sin2 θ′

]2{0.0070
0.0023

}
. (2.100)

In this case, Setup (b) yields a higher reflection rate, since no angle δ can nullify the exponential
suppression for Setup (a). If Setup (a) could be modified in such a way that the frequency of
the background beam be doubled, then the exponent could be more or less matched to zero,
yielding a much higher reflection coefficient. This could be done in principle by creating SHG at
the cost of an intensity loss (the conversion efficiency Q ranges from 30% to 70%). Considering
a frequency doubled background beam and including the conversion efficiency Q, the optimal
angle for Setup (a) changes to

δmax ≈ 48.5°, (2.101)

Here it is assumed that the background beam can again be focused with an f -number of 1, which
leads to w0 = 517.5nm = 2.63 eV−1 and a doubled magnetic field of B = 5.72 · 108 eV2. The
reflection increases to

Rp = Q2
[
sin2 θ + sin2 θ′

]2 · 0.92 · 10−22

{
49
16

}
, (2.102)

Np = Q2
[
sin2 θ + sin2 θ′

]2{0.073
0.024

}
. (2.103)

Depending on the conversion efficiency Q, the reflection for Setup (a) was increased by about 10
orders of magnitude and, as a result of the exact matching and higher focussing of the background
field, is now of the same order of magnitude as Setup (b).

2.3.7. Two Gaussian potentials a distance l apart

The potential (2.79) is only an approximation to the field configuration generated by two par-
allelly propagating beams as described in the last section. Of course, we can also calculate the
exact expression for the reflection coefficient for such a configuration

B(x) = B

(
e
−
(

x+l
w0

)2

− e−
(

x−l
w0

)2)
, (2.104)

where l denotes the distance of either beam axis from the origin. To compare it directly with
the experimental setup in the last section, we would have to choose l = λpump = w0. However,
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we should rather make use of the additional free parameter l and leave it unspecified for now.
The reflection coefficient evaluates to

Rp =

∣∣∣∣∣√2πCpB
2ω̃w0e

− 1
2
ω̃2w2

0

(
cos(2ω̃l)− e

−2 l2

w2
0

)∣∣∣∣∣
2

. (2.105)

We can already see that the exponential suppression cannot be overcome by the modification of
the exponent with a modulating frequency of some kind. Instead, the behavior of Rp is closer
to that of the very first examples where the exponential suppression can be overcome by simply
increasing the angle of incidence β. However, the dependency on the angle β is not strictly
monotonous anymore owing to the possible cancelation of the terms in the brackets (...). For a
given angle β, we can adjust the separation length l according to

2ω l cosβ = (2k + 1)π with k ∈ N (2.106)

We now choose angles of the same order as for the treatment of the pure modulation in the last
section, i.e.

Setup (a): βmax ≈ 67.9° and Setup (b): βmax ≈ 50.9°, (2.107)

and make use of the additional freedom by picking the smallest separation length l fulfilling the
condition (2.106). The values are given by

Setup (a): lmax ≈ 2.69 eV−1 and Setup (b): lmax ≈ 2.08 eV−1. (2.108)

Plugging those values into the formula for the reflection coefficient Eq. (2.105), we find

Setup (a): Rp =
[
sin2 θ + sin2 θ′

]2 · 1.3 · 10−24

{
49
16

}
, (2.109)

Np =
[
sin2 θ + sin2 θ′

]2 · 10−3

{
1.0
0.33

}
, (2.110)

Setup (b): Rp =
[
sin2 θ + sin2 θ′

]2 · 1.7 · 10−26

{
49
16

}
, (2.111)

Np =
[
sin2 θ + sin2 θ′

]2 · 10−5

{
8.4
2.8

}
. (2.112)

Employing the same angles as in the case with ideal modulation, the reflection for both setups
is about two orders of magnitude lower in the former case. Of course, higher reflection rates
are accessible by choosing higher angles β and adjusting the separation length l accordingly.
However, the mechanism of circumventing the exponential suppression is then basically the same
as for the very first discussed beam profiles (Lorentz, pure Gaussian etc.) and leads again
to rather large angles to achieve a sizable rate of reflection. This discussion shows that the
parallelly propagating beam setup does not actually help to reduce the angle βmax unless an
ideal modulation resembling Eq. (2.79) can be created.

2.3.8. 4π focussed pulses

We have seen in the last examples that, in order to maximize the effect of quantum reflection,
one first has to overcome the exponential suppression and secondly provide a focus w0 as small
as possible, as this will lead via Eq. (2.45) to an increased amplitude of the magnetic background
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field. According to [36], 4π focused laser pulses provide the most efficient focus of all possible
configurations, even allowing to go lower than the diffraction limit. In their paper the authors
proposed an experimental setup which generates such dipole pulses by employing a parabolic
mirror. This section deals with calculating the reflection coefficient for such a setup, where
“quasi-Gaussian” pulses are used as input beams. First, let us review the most important points.
The starting point is a virtual electric dipole moment at the focus point r = 0, where the

singularities at the origin are eliminated by the addition of retarded and advanced potentials.
The corresponding exact, singularity free solution for the magnetic and electric fields is given by
(quoting the paper using Gaussian units)

H(r, t) = −(n× d0)

[
1

c2

g̈+(t, R)

R
+

1

c

ġ−(t, R)

R2

]
, (2.113)

E(r, t) = −n× (n× d0)

Rc2
g̈−(t, R) +

3n(nd0)− d0

R3

[
R

c
ġ+(t, R) + g−(t, R)

]
. (2.114)

Here R = |r| and n = r/R. The quantity d0 = const. denotes the virtual dipole moment and
g±(t, R) = g(t−R/c)± g(t+R/c), where g(t̃) is the dimensionless driving function of the dipole
moment, i.e. d(t ± R/c) = g(t ± R/c)d0. The virtual dipole moment can be approximately
related to the input energy of the laser pulse by means of the relation

E =
2d2

0

3c3

∫ ∞
−∞

g̈2(t̃)dt̃, (2.115)

where the approximation of an infinitely large focusing system and dipole pulses of finite duration
was made. This setup maximizes the electric field at the time t = 0, while the magnetic field
at that moment vanishes. To switch to our case of a desirably strong magnetic field the electric
dipole has to be substituted by a magnetic dipole leading to a continued validity of the given
formulas provided one substitutes

HMD ←− EED, EMD ←− −HED . (2.116)

Furthermore, we consider a dipole moment d0 = d0ez and our probe beam will be traveling along
the x-axis meeting the focus point at time t = 0. Therefore, the following field configurations
are the starting points of our considerations

E = (n× d0)

[
1

c2

g̈+(t, R)

R
+

1

c

ġ−(t, R)

R2

]
, (2.117)

H = − d0

Rc2
g̈−(t, R)− d0

R3

[
R

c
ġ+(t, R) + g−(t, R)

]
. (2.118)

More specifically,

Ey(t, R) = −d0

[
1

c2

g̈+(t, R)

R
+

1

c

ġ−(t, R)

R2

]
, (2.119)

Hz(t, R) = − d0

Rc2
g̈−(t, R)− d0

R3

[
R

c
ġ+(t, R) + g−(t, R)

]
(2.120)

are the only non-vanishing components of the fields. The restriction to this setting implies
vanishing parallel components, i.e. k‖ = 0, and consequently the parallel case is the one under
consideration here. The perpendicular component, on the other hand, is not unaffected by the
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inhomogeneity and therefore this case must not be considered. Since k and B are perpendicular,
the angles evaluate to sin θ = sin θ′ = 1. To treat quasi-Gaussian pulses, we take the driving
function

g(t̃) = e−a
2 t̃2 sin(ωmt̃). (2.121)

The quantities appearing in Eq. (2.121) can be related directly to the incoming laser pulse (the
background beam) because in the far field the field amplitudes are proportional to the second
derivative of g(t̃),

g̈(τ) = e−a
2 t̃2
[
−4a2ωmt̃ cos(ωmt̃) + (4a4t̃2 − ω2

m − 2a2) sin(ωmt̃)
]
, (2.122)

since in (2.118) the terms ∝ 1
R dominate. This still has a “quasi-Gaussian” shape and hence ωm

can be related to the mean frequency of the background beam, while 1
a = τ

2 corresponds to the
duration of the background beam pulse. Here, τ

2 is the time when the magnetic field envelope
decreases to 1

e of its maximum value, τ thus denotes the pulse length.

Calculation of the reflection coefficient

For the calculation of R‖ we assume the probe beam to hit the “static” background field evaluated
at time t = 0. Explicitly calculating (2.118) for the Gaussian driving function (2.121) at the
time t = 0 and switching to SI-units leads to

B(x) = Bz(t = 0, R) =
d0√
π
e−a

2x2

[
cos(ωmx)

(
4a2ωm +

ωm
x2

)
+ sin(ωmx)

(
ω2
m

x
− 4a4x− 1

x3

)]
,

(2.123)
where

d0 =

√
3Ea

ω2
m

(
π
2

) 1
4

[(
1 + 6 a2

ω2
m

+ 3 a4

ω4
m

)
− 3 a4

ω4
m
e−

ω2
m

2a2

] 1
2

. (2.124)

Figure 2.10 shows a plot of the resulting magnetic field (2.123) for the setups (a) and (b) and
compares them to the case modulated field of the parallelly propagating beams from Sec. (2.3.6).
Employing Eq. (2.64) for the reflection coefficient R‖,

R‖ =

∣∣∣∣C‖ω ∫ ∞
−∞

e2iωxB2(x)dx

∣∣∣∣2 =

∣∣∣∣C‖ωd2
0

π
I(ω, ωm, a)

∣∣∣∣2 , (2.125)

we have to calculate the integral

I(ω, ωm, a) =

∫ ∞
−∞

dx e2iωxe−2a2x2 [
S1(x) + a2S2(x) + a4S3(x) + S4(x)

]
, (2.126)

where

S1(x) =
ω2
m

x4
+ sin2(ωmx)

(
ω4
m

x2
+

1

x6
− 3

ω2
m

x4

)
+ 2 cos(ωmx) sin(ωmx)

(
ω3
m

x3
− ωm

x5

)
, (2.127)

S2(x) = 8 cos2(ωmx)
ω2

x2
+ 8 cos(ωmx) sin(ωmx)

(
ω3
m

x
− ωm

x3

)
, (2.128)

S3(x) = 8 sin2(ωmx)
1

x2
− 8 cos(ωmx) sin(ωmx)

ωm
x
, (2.129)

S4(x) = 16 cos2(ωmx)a4ω2
m − 8 sin2(ωmx)a4ω2

m

− 32 cos(ωmx) sin(ωmx)a6ωmx + 16 sin2(ωmx)a8x2.
(2.130)
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Setup (a): 4π dipole pulse
Setup (b): 4π dipole pulse
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Figure 2.10.: Plot of the magnetic field B(x) for the 4π dipole pulses and the approximated modulated
field from the last section for parallelly propagating beams employing values from setups (a) and (b). The
smaller focus area leads to an increased peak amplitude of the magnetic field for the 4π dipole pulses.

The terms Si(x) are regular, although the individual sum terms contained in them diverge for
x → 0. Therefore, the integral has to be handled with care. Dealing with each of the terms Si
individually, the general strategy is to write the integrand as a divergent part 1

xn times a regular
part and reduce the negative order by partial integration until only 1

x factors remain. The only
difficulty left is to compute integrals of the kind∫ ∞

−∞
dy

sin γy

y
e−α

2y2+iβy =
1

2i

∫ ∞
−∞

dy
1

y
e−α

2y2+i(β+γ)y − 1

2i

∫ ∞
−∞

dy
1

y
e−α

2y2+i(β−γ)y

=: f+ − f− ,
(2.131)

where dimensionless units y have been introduced and α, γ ∈ R, β ∈ C denote real and complex
constants respectively. These can be solved by introducing a parameter s via a proper-time
integral and solve the integrals by switching the order of integration. The calculation is performed
as follows,

f± =
1

2i

∫ ∞
−∞

dy
1

y
e−α

2y2+i(β±γ)y =
1

2i
lim

Λ→∞

∫ Λ

0
ds

∫ ∞
−∞

dy e−α
2y2+i(β±γ+is)y (2.132)

=
1

2i

√
π

α
lim

Λ→∞

∫ Λ

0
ds e

1
4α2 (s−i(β±γ))2

(2.133)

=
π

2
lim

Λ→∞

[
erf
(

1

2iα
(Λ− i(β ± γ))

)
+ erf

(
1

2α
(β ± γ)

)]
, (2.134)

and in the limit Λ→∞ the result reads∫ ∞
−∞

dy
sin γy

y
e−α

2y2+iβy =
π

2

[
erf
(

1

2α
(β + γ)

)
− erf

(
1

2α
(β − γ)

)]
, (2.135)
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which is regular. The Gaussian error function erf(z) for arbitrary, complex arguments z is defined
as

erf(z) :=
2√
π

∫ z

0
dt e−t

2
. (2.136)

Performing the outlined procedure, the final result for the Integral I is given by

I(ω, ωm, a) =
a
√

2π

30

[
P+e

− (ω+ωm)2

2a2 + P−e
− (ω−ωm)2

2a2 − 2Qe−
ω2

2a2

]
+

π

30

[
R+erf

(
ω + ωm√

2a

)
+R−erf

(
ω − ωm√

2a

)
− (R+ +R−)erf

(
ω√
2a

)]
, (2.137)

where P±, R± and Q are polynomials in ω, ωm and a given by

P± = P (ω,±ωm, a) =121a4 + 33a2ω2 + 2ω4 + 73a2ω2
m + 12ω2ω2

m + 7ω4
m

± (76a2ωωm + 8ωω3
m − 2ω3ωm),

R± = R(ω,±ωm, a) =150a4ω + 20a2ω3 + 2ω5 + 150a2ωω2
m + 10ω3ω2

m + 15ωω4
m

± (180a4ωm + 120a2ω2ωm + 80a2ω3
m + 20ω2ω3

m + 7ω5
m),

Q = Q(ω, ωm, a) =121a4 + 33a2ω2 + 2ω4 + 110a2ω2
m + 10ω2ω2

m + 15ω4
m.

(2.138)

Numerical results

We again evaluate the result for the two setups (a) and (b). The magnitude of the reflection
coefficient depends on the parameter a = 2/τ , with shorter incoming pulses yielding a higher re-
flection. The 4π dipole pulses are of very little spatial extension, however, their time dependence
in the focal point R = 0 is given by (in Gaussian units)

H =
4

3c3

...
d(t) (2.139)

and in our case possesses the same Gaussian envelope e−a2 t̃2 as the far field. Therefore, the same
factor fint as in the previous examples can be employed. Note however, that since the temporal
dependence in the focus is basically given by the time derivative of the far field, very short
dipole pulses can be created by using input beams featuring sharp pulse fronts and therefore the
maximum field amplitude can be further increased. The reflection coefficients for our two setups
are given by

Setup (a): R‖ = 3.0 · 10−48, (2.140)

N‖ = 4.8 · 10−29, (2.141)

Setup (b): R‖ = 6.9 · 10−20, (2.142)

N‖ = 6.8 . (2.143)

The reflection for Setup (a) is negligible, which is a consequence of the special dependence of the
result (2.137) on ω and ωm. Interestingly, the higher input power of the POLARIS laser does
little to outweigh the longer pulse duration. Setup (b) yields reflection rates of about 7 photons
per shot and is thus comparable to the very first cases considered, albeit there it always was
Setup (a) providing better results.
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2.4. Conclusions

In the previous section, we discussed a variety of beam profiles and calculated their respective
reflection coefficients and number of reflected photons per shot employing the laser parameters of
the Jena based laser facilities POLARIS and JETI200. By means of inducing a modulation of the
background field or by shining the probe beam under an angle β, the effect could be maximized
to yield reflection rates of the order of 1 photon per shot. In principle, employing single photon
detection techniques ([37]) over a large number of repetitions should produce measurable results
and thus quantum reflection might turn out to be an interesting candidate for probing the
quantum vacuum nonlinearity. However, as was mentioned earlier, the temporal structure of the
background beams was completely neglected, which means that reliable quantitative predictions
are not yet possible. Rather, the present chapter provides first estimates and, more importantly,
insights into some of the effects and techniques related to the quantification of this phenomenon.
It is interesting to note that the formal analogy to atomic quantum reflection also persists on

the level of the resulting equations. As was shown in [15], the rate of reflection is exponentially
suppressed, i.e. R ∼ exp(−Cvx), where vx denotes the normal component of the velocity of the
incoming particles with respect to the surface. This fact necessitates the shining of the atomic
probe beams under a grazing angle of incidence in order to achieve a normal velocity component
as small as possible. It becomes clear that in our optical case ω̃ plays exactly the same role as
vx and we were also forced to use grazing incidence to overcome the exponential suppression.
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3. Reflection at time dependent magnetic
fields

In the following chapter we now aim to extend the treatment to include time dependent magnetic
fields. The first section describes the setup and shows a derivation of the corresponding Green’s
function solving the equation of motion in analogy to the last chapter. In the second section we
suggest a definition of the reflection coefficient for the time dependent case. The third section
gives an expression of the Fourier transform of the photon polarization to the lowest orders. A
discussion of the calculation of the current j⊥ concludes this chapter.

3.1. The Green’s function for the time dependent case

The general setting is again the same as for the static case, see Fig. 2.1. We especially consider
the probe photon beam to be restricted to the x-y plane as well as the background field to be
homogeneous in the y and z directions, but vary in the x direction with a maximum at x = 0 and
approaching zero asymptotically for |x| → ∞. Additionally, the magnetic field now varies over
time. We demand this temporal variation to be well localized, i.e. to fall off sufficiently rapidly
for large times |t| → ∞. The background field is defined to reach its peak intensity around the
time t = 0. If a plane wave now travels through the origin and interacts with the background
field, the result will be an induced wave packet with finite spatial and temporal extension, since
the interaction can only take place for a finite amount of time. Furthermore, if the incoming
beam is already a wave packet of finite extent, it has to pass through the origin at times when
the magnetic field has its peak amplitude in order for notable interaction to occur.
Since we aim to utilize the same strategy as in the last chapter, i.e. employ the expression

for the photon polarization tensor in a constant magnetic field and substitute B → B(x, t) to
account for the inhomogeneity, we have to require the magnetic field to vary sufficiently slowly.
The time scale τ for the existence of the virtual electron-positron pairs with energy E is given
by τE ∼ 1. Hence, the polarization tensor probes time scales of the order of the Compton time,
i.e. τ ≈ 1/m ≈ 1.98 ·10−6 eV−1 ≈ 1.3 ·10−21 s. The approximation of a locally time independent
field should hold true as long as the temporal variation of the laser pulse is much larger than τ ,
which is the case for practically all viable setups.
For the calculation of the reflected field, we again make use of the equation of motion (1.26)

which also served as a starting point in the static case. Using the same strategy as in Sec. (2.1),
we strive to rid ourselves of the complicated tensor structure, but at the same time still try
to consider cases as general as possible. In analogy to the last chapter, we can again identify
settings ‖ and ⊥ with the potential to simplify the equations of motion. However, keeping in
mind that this time we will have to apply Fourier transformations (A.13) acting on space as
well as time coordinates, it becomes clear that the parallel setting has to be dropped from our
discussion. The projector P‖(k) does not remain unaffected anymore by the inhomogeneity, as
k‖ = (ω,k‖) possesses a k0-component which will be affected by the temporal variation. Hence,
P‖(k) 6= P‖(k

′). We furthermore see that the temporal inhomogeneity will likely induce frequency
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conversions between incoming and induced photon beam in the general case.
The above consideration leaves us only with the perpendicular component to apply on a

similar procedure as in the last chapter. For the remainder of this work we shall only consider
this component. The equation of motion for this particular case again simplifies to the scalar
equation

k2a⊥,ind(k) = −
∫

d4k′

(2π)4
Π̃⊥(k,−k′|B)a⊥,in(k′), (3.1)

and, limiting ourselves to the two-dimensional case, we arrive at(
k2
x − ω2 + k2

y

)
a⊥,ind(kx, ky, ω) = −

∫
dk′x
2π

∫
dω′

2π
Π̃⊥(kx,−k′x, ω,−ω′, ky|B)a⊥,in(k′x, ky, ω

′).

(3.2)
A transformation to position space employing (A.13) results in[
− ∂2

∂x2
+
∂2

∂t2
+ k2

y

]
a⊥,ind(x, ky, t) = −

∫
dx′ Π̃⊥(x, x′, t, t′, ky) a⊥,in(x′, ky, t

′) = j⊥(x, ky, t),

(3.3)
with the symmetrized polarization tensor in position space

Π̃(x, x′, t, t′) =
1

2

[
Π(x, x′, t, t′, ky) + Π(x′, x, t′, t, ky)

]
. (3.4)

We now calculate the corresponding Green’s function solving[
− ∂2

∂x2
+
∂2

∂t2
+ k2

y

]
G(x, x′, t, t′, ky) = δ(x− x′)δ(t− t′), (3.5)

or in position space(
k2
x − ω2 + k2

y

)
G(kx, k

′
x, ω, ω

′) = 2πδ(kx + k′x)2πδ(ω + ω′). (3.6)

In order to maintain causality, we have to use the integration prescription which produces the
retarded Green’s function, reading

G(x, x′, t, t′) =

∫ ∞
−∞

∫ ∞
−∞

dkx
2π

dω

2π

eikx(x−x′)e−iω(t−t′)(
ω −

√
k2
x + k2

y + iε
)(

ω +
√
k2
x + k2

y + iε
) . (3.7)

The contour of the ω integration is such that it circumvents the poles in clockwise half circles.
Closing the integration path below for t− t′ > 0 picks up both poles, while for t− t′ < 0 and a
path in the upper half plane picks up none. Therefore we arrive at

G(x, x′, t, t′) = −θ(t− t′)
∫ ∞
−∞

dkx
2π

eikx(x−x′)
sin
(√

k2
x + k2

y(t− t′)
)

√
k2
x + k2

y

= −θ(t− t′)
∫ ∞
−∞

dkx
2π

cos
(
kx|x− x′|

) sin
(√

k2
x + k2

y(t− t′)
)

√
k2
x + k2

y

.

(3.8)

The solution to this Fourier cosine transformation is given in [38], page 26 and reads

G(x, x′, t, t′) = −1

2
Θ(t− t′ − |x− x′|) J0

(
|ky|
√

(t− t′)2 − (x− x′)2
)
, (3.9)
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where
J0(z) :=

1

π

∫ π

0
cos(z sinφ) dφ (3.10)

defines the Bessel function of the first kind. The condition for the non-vanishing of the Green’s
function can be rewritten to read

x + t− t′ > x′ > x− (t− t′) (3.11)

and is exactly the condition of causality: points outside the past light-cone cannot influence the
value of the field at the point (x, t). From Eq. (3.10) we see right away that J0(0) = 1. The
result for the special case of ky = 0 consequently takes on a quite simple form, i.e.

G(x, x′, t, t′) = −1

2
Θ(t− t′)


1 for − (t− t′) < x− x′ < t− t′,
1
2 for |x− x′| = |t− t′|,
0 otherwise.

(3.12)

The general result for the induced field a⊥,ind is given by

a⊥,ind(x, t, ky) =− 1

2

∫ t

−∞
dt′
∫ x+t−t′

x−(t−t′)
dx′ J0

(
|ky|
√

(t− t′)2 − (x− x′)2
)
j⊥(x′, ky, t

′)

=
1

2

∫ t

−∞
dt′
∫ x+t−t′

x−(t−t′)
dx′
∫
dx′′

∫
dt′′

× J0

(
|ky|
√

(t− t′)2 − (x− x′)2
)

Π̃⊥(x′, x′′, t′, t′′, ky) a⊥,in(x′′, ky, t
′′).

(3.13)

We can now implement the spatially and temporally inhomogeneous magnetic field B(x, t) in the
polarization tensor in analogy to the last chapter. The general procedure is outlined as follows,

Π̃µν(k′x, ω
′) (2π) δ(kx + k′x) (2π) δ(ω + ω′)

F.T.−−→ Π̃µν(x− x′, t− t′) B→B(x,t)−−−−−−→ Π̃µν(x, x′, t, t′) .
(3.14)

A Fourier transformation on the x component of the momentum vector and on the energy com-
ponent according to A.13 results in a polarization tensor solely depending on the differences
x− x′ and t− t′, since translational and temporal invariance must hold. Inserting the space and
time dependence of the magnetic field, i.e. B → B(x, t), breaks both invariances and we arrive
at the required expression Π̃µν(x, x′, t, t′). An inverse Fourier transformation would result in a
polarization tensor Π̃µν(kx, k

′
x, ω, ω

′) mediating between two distinct momenta kx and k′x as well
as two distinct photon energies ω and ω′.

3.2. Definition of the reflection coefficient

In the last chapter, the reflection coefficient for the one-dimensional static case was defined as
the ratio of the squared amplitude |Aref |2 of the reflected beam to the squared amplitude |Ain|2
of the incoming beam. In the static case this is equal to the ratio of intensities, which is also
the physical quantity a measuring device registers at a given moment of time (i.e. a photo-
diode measures the number of photons hitting its area). Therefore, a reasonable definition of
the reflection coefficient for the time dependent case is given by the ratio of the time integrated
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intensities of the incoming and reflected beams, which suitably placed detectors with a certain
area measure. This quantity characterizes the total energy Eref , which gets reflected and passes
the area of the detector, set in relation to the incoming beam energy Ein. We set the maximum
of interaction at time t = 0 and place x = 0. The incoming beam starts at a time t = −∞ and
at position x = −∞ and travels in positive x direction. The detector is appropriately set up at
a large negative position x = −L and is assumed to span an area Adec in the y-z plane. Hence,
the majority of the reflected beam photons will have passed the detector at some large, positive
time. We define the intensity of the photon beam at a certain spatial point x and time t as

I(x, t) = energy density · group velocity
= w(x, t) · cgr(x, t),

(3.15)

where the energy in a given volume V can be obtained from

E(t) =

∫
V
d3x w(x, t) =

1

2

∫
V
d3x

(
e2(x, t) + b2(x, t)

)
. (3.16)

In our case, the position of measurement is already far outside the interaction region and therefore
the beam travels with group velocity cgr = 1. The electric field e(x, t) and the magnetic field
b(x, t) of the photon beam are related to the vector potential a(x, t) by means of the field strength
tensor Fµν = ∂µaν − ∂νaµ, see the appendix A. More specifically, the electric and magnetic field
components are given by

ei = F 0i = ∂0ai − ∂ia0 −→ e = −∂ta(x, t)− grad a0(x, t), (3.17)

bi =
1

2
εijkF

jk −→ b = rot a(x, t). (3.18)

We can now derive an expression for the reflection coefficient R⊥. This will be done only for
the perpendicular component and the justification was given in the last section. Consulting Eq.
(1.47), the corresponding photon polarization mode for the perpendicular case is given by

aµ⊥(x, t) = a⊥(x, t)

[
0,

ek × eB
|ek × eB|

]
= a⊥(x, t)

[
0,

ek × eB
sin θ

]
=: a⊥(x, t) [0, ea] . (3.19)

The electric field then simplifies to

e(x, t) = − ∂ta⊥(x, t) ea, (3.20)

and the magnetic field can be simplified by using an identity from vector analysis, in which case
we obtain

b(x, t) = rot (a⊥(x, t) ea) = −ea × grad a⊥(x, t). (3.21)

In the last section we saw that the y and z components of the probe photon momentum k are
not affected by the inhomogeneity and we obtained an expression for the potential a⊥(x, ky, t)
as a function of x, t and ky. This quantity can be related to a⊥(x, y, t) by means of the partial
Fourier transformations (A.12), i.e.

a⊥(x, y, t) =

∫
dky
2π

a⊥(x, ky, t)e
ikyy. (3.22)

We now put the time and area integrated intensity of the reflected beam a⊥,ref(x, y, t) in relation
to the incoming beam a⊥,in(x, y, t) and define this quantity as the reflection coefficient, i.e.

R⊥ :=

∫∞
−∞ dt

s
Adec

dy dz
[
(Re e⊥,ref)

2(x, y, t) + (Reb⊥,ref)
2(x, y, t)

]∫∞
−∞ dt

s
Adec

dy dz [(Re e⊥,in)2(x, y, t) + (Reb⊥,in)2(x, y, t)]

∣∣∣∣∣
x=−L

. (3.23)
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The reflection coefficient thus measures the energy which hits a detector with area Adec positioned
at a large negative distance −L and puts it in relation to the incoming beam energy. The latter
we formally assume to be measured by another detector with the same area Adec, but put into
such a position that it registers the incoming beam. Since our problem is z independent, the
z integrals in the numerator and denominator cancel out. One requirement for the use of this
formula is that both the incoming and the reflected beam are wave packets localized in time
and x direction. If the wave packet is furthermore localized in the y direction and we assume
the detector’s area large enough to pick up the bulk of the energy of the reflected beam, we can
formally extend the integration limits in the y direction to ±∞. Keep in mind that Eq. (3.23)
requires the evaluation of the real parts of the electric and magnetic field components if we are
dealing with complex quantities. For beams with such properties, the reflection coefficient takes
the form

R⊥ :=

∫∞
−∞ dt

∫∞
−∞ dy

[
(Re e⊥,ref)

2(x, y, t) + (Reb⊥,ref)
2(x, y, t)

]∫∞
−∞ dt

∫∞
−∞ dy [(Re e⊥,in)2(x, y, t) + (Reb⊥,in)2(x, y, t)]

∣∣∣∣∣
x=−L

, (3.24)

where the electric and magnetic fields have to be evaluated according to Eqs. (3.20) and (3.21).
As shown in the last chapter, the perpendicular setting restricts the possible directions of the
magnetic field. If the magnetic field points into the direction of the inhomogeneity, i.e. eB = ex,
the equations for the field components simplify substantially, since ea = −ez. The reflection
coefficient can then be written as

R⊥ =

∫∞
−∞ dt

∫∞
−∞ dy

[
(Re ∂ta⊥,ref)

2 + (Re ∂xa⊥,ref)
2 + (Re ∂ya⊥,ref)

2
]∫∞

−∞ dt
∫∞
−∞ dy [(Re ∂ta⊥,in)2 + (Re ∂xa⊥,in)2 + (Re ∂ya⊥,in)2]

∣∣∣∣∣
x=−L

. (3.25)

In most cases, it will be easier to evaluate incoming plane waves in the x and y direction
and use these to approximately describe the incoming probe laser pulse, as was already done
in the last chapter. Under these circumstances, Eq. (3.23) cannot be used to calculate the
fraction of reflected photons since the numerator and denominator diverge. However, then one
can substitute the denominator by the total pulse energy Ein of the incoming probe laser pulse.
We therefore define the reflection coefficient in the case of an incoming plane wave with specific
kx and ky as

R⊥(kx, ky) :=

∫∞
−∞ dt

s
Adec

dy dz
[
(Re e⊥,ref)

2(x, y, t) + (Reb⊥,ref)
2(x, y, t)

]
2Ein

∣∣∣∣∣
x=−L

. (3.26)

The amplitude A⊥,in of the incoming beam a⊥,in(x, t) has to be matched to correspond to a given
energy Ein of the incoming probe beam, when the area of the detector Adec is taken into account.
This can be done easily for the special case of eB = ex, as is demonstrated now. The incoming
plane wave a⊥,in(x, t) = −ezA⊥,in exp[i(kxx + kyy − ωt)] with a constant and real amplitude
A⊥,in has an energy density of

w(x, t) = ω2A2
⊥,in sin2[kxx + kyy − ωt], (3.27)

where ω2 = k2
x + k2

y. We can now choose the area of the detector to be of following extent in
y and z directions: Adec = (y = 0...2π/ky, z = 0...2π/ky). Furthermore, choosing the temporal
integration to be of the order of the incoming pulse length τ and demanding that this corresponds
to 86% of the energy contained within the pulse, we obtain the formula

A⊥,in ≈

√
0.86

k2
yEin

2π2τω2
. (3.28)
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Equation (3.28) approximately relates the amplitude Ain to the incoming beam energy for the
case of plane waves, if ky 6= 0. For the case of ky = 0 the only length scale left is given by kx,
so we choose a detector area Adec = (y = 0...2π/kx, z = 0...2π/kx). The integrations will be
independent of y and the energy relates to the amplitude by

A⊥,in ≈
√

0.86
k2
xEin

2π2τω2
. (3.29)

Such a plane wave approximation as done here should comply well with the Setup (b) described
in the last chapter, since the pulse duration of the POLARIS probe laser is about eight times
longer than that of the JETI200 pump laser.

3.3. Fourier transform of the polarization tensor

In this section, we perform a partial Fourier transformation (A.13) on the perpendicular com-
ponent of the weak field photon polarization tensor (1.49). Again, we only consider the lowest
orders (1.50) and (1.52). The perpendicular component of the photon momentum k⊥ = kyey
can be identified with the y component in our case of two dimensions.

Order n=0

Starting with 2πδ(kx + k′x)2πδ(ω + ω′)Π⊥,(0)(k) according to our procedure (3.14), we must
evaluate the expression

Π⊥,(0)(x− x′, t− t′,k⊥) =
α

4π

∫ 1

0
dν

(
ν2

3
− 1

)
ν2

∫
dkx
2π

∫
dω

2π

(
k2
x − ω2 + k2

⊥
)2
eikx(x−x′)−iω(t−t′)

m2 − iε+
(
k2
x − ω2 + k2

⊥
)

1−ν2

4

. (3.30)

Substituting

u = kx − ω, v = kx + ω, x± := x− x′ ± (t− t′) and η := 4
m2 − iε
1− ν2

, (3.31)

the expression can be cast into

Π⊥,(0)(x− x′, t− t′,k⊥) =
α

2π

∫ 1

0
dν

(
ν2

3 − 1
)
ν2

1− ν2

∫
du

2π
e
i
2

x+u

∫
dv

2π

(
uv + k2

⊥
)2

uv + η + k2
⊥
e
i
2

x−v. (3.32)

Let us first compute the innermost integral, i.e.

Iv :=

∫ ∞
−∞

dv

2π

(
uv + k2

⊥
)2

η+k2
⊥

u + v
e
i
2

x−v. (3.33)

Depending on the sign of u, the poles of v lie in the upper (u > 0) or lower (u < 0) complex
plane. The contour has to be closed in the upper plane for x− > 0 and in the lower plane for
x− < 0. Hence, Iv evaluates to

Iv = i [Θ(u)Θ(x−)−Θ(−u)Θ(−x−)] η2e−
i
2

x−
u

(η+k2
⊥), (3.34)

47



CHAPTER 3. REFLECTION AT TIME DEPENDENT MAGNETIC FIELDS

and therefore

Π⊥,(0)(x− x′, t− t′,k⊥) =
α

2π

∫ 1

0
dν

(
ν2

3 − 1
)
ν2

1− ν2
η2[

Θ(x−)

∫ ∞
0

dy

2π

1

y
e
− i

2

(
−(η+k2

⊥)x−y−
−x+
y

)
+ Θ(−x−)

∫ ∞
0

dy

2π

1

y
e
i
2

(
(η+k2

⊥)x−y−
x+
y

)]
,

(3.35)

where the substitution u = 1/y has been performed. The y-integral can be solved in terms of
modified Bessel functions by employing formula 3.3241 from [39],∫ ∞

0
dx e−

β
4x
−γx =

√
β

γ
K1

(√
βγ
)

for Reβ ≥ 0, Re γ > 0. (3.36)

Differentiating with respect to the parameter β to generate the inverse powers of x and employing
the recurrence relation 9.6.26 from [40],

K ′ν(z) = Kν−1(z)− ν

z
Kν(z), (3.37)

we arrive at the formula∫ ∞
0

dx
1

x
e−

β
4x
−γx = −2K0

(√
βγ
)

for Reβ ≥ 0, Re γ > 0. (3.38)

Hence, the solution for the lowest order is given by

Π⊥,(0)(x− x′, t− t′,k⊥) = − iα

2π2

∫ 1

0
dν

(
ν2

3 − 1
)
ν2

1− ν2
η2K0

(√
x+x−(η + k2

⊥)

)
. (3.39)

Order n=1

The first nontrivial order is given by n = 1. Again, we compute the Fourier transform of
2πδ(kx + k′x)2πδ(ω + ω′)Π⊥,(2)(k) along the same lines as in the last section, i.e.

Π⊥,(2)(x− x′, t− t′,k2
⊥) = − α

12π

∫ 1

0
dν(1− ν2) ·

∫
dkx
2π

∫
dω

2π
eikx(x−x′)−iω(t−t′)

1

φ2
0

{
(k2
x − ω2)(1− ν2) +

(
1 +

1 + ν2

2
+ (1− ν2)

m2

φ2
0

)
k2
⊥

}
. (3.40)

Performing the same substitutions as in the last section, we arrive at

Π⊥,(2)(x− x′, t− t′,k2
⊥) = −2α

3π

∫ 1

0
dν

1

1− ν2

∫
du

2π
e
i
2

x+u

∫
dv

2π
e
i
2

x−v

1[
uv + η + k2

⊥
]2
{
uv(1− ν2) +

(
1 +

1 + ν2

2
+

4m2[
uv + η + k2

⊥
]2
)
k2
⊥

}
, (3.41)

and the innermost integral is given by

Iv :=

∫
dv

2π
e
i
2

x−v

1

u

v(1− ν2)[
η+k2

⊥
u + v

]2 +

 1

u2

(
1 + 1+ν2

2

)
[
η+k2

⊥
u + v

]2 +
1

u3

4m2[
η+k2

⊥
u + v

]3

k2
⊥

 . (3.42)
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Now the poles are of higher order, but they still have the same location in the complex plane as
for the zero-th order. The integral evaluates to

Iv = i [Θ(u)Θ(x−)−Θ(−u)Θ(−x−)] e−
i
2

x−
u

(η+k2
⊥)

×
{

(1− ν2)

(
1

u
− 1

u2

i

2
x−(η + k2

⊥)

)
−
((

1 +
1 + ν2

2

)
1

u2

i

2
x− +

m2

2u3
x2
−

)
k2
⊥

}
(3.43)

and Eq. (3.41) therefore becomes

Π⊥,(2)(x− x′, t− t′,k2
⊥) = −2iα

3π

∫ 1

0
dν

1
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}]
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(3.44)

The y integrals can again be evaluated according to the procedure of the last section. The one
missing integral is generated from the integral (3.36) by differentiation with respect to γ and its
solution therefore given by∫ ∞

0
dx x e−

β
4x
−γx = −

[√
β

γ3
K1

(√
βγ
)

+
1

2

β

γ
K0

(√
βγ
)]

for Reβ ≥ 0, Re γ > 0.

(3.45)
Keeping in mind that the square root in Eq. (3.36) has to be taken using the positive solution,
the result for the second order Fourier transformed polarization tensor can be conveniently stated
as follows,

Π⊥,(2)(x− x′, t− t′,k2
⊥) = − iα

6π2

∫ 1

0
dν

{[
−4−

2m2k2
⊥

η + k2
⊥

x+x−
1− ν2

]
K0

(√
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⊥)2

1
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+
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1
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⊥
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⊥
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x+x−(η + k2

⊥)

)}
. (3.46)

Note that the result is invariant with respect to translations as it only depends on the quantities
x − x′ and t − t′. More specifically, the photon polarization tensor in position space is a pure
function of x+x− = (x − x′)2 − (t − t′)2, since the polarization tensor in momentum space, Eq.
(1.50) and (1.52), depends solely on combinations uv = k2

x − ω2. The full solution up to the
second order is therefore given by

Π⊥(x−x′, t−t′,k2
⊥) = Π⊥,(0)(x−x′, t−t′,k2

⊥)+(eB)2 Π⊥,(2)(x−x′, t−t′,k2
⊥)+O

(
(eB)4

)
, (3.47)

together with Eqs. (3.39) and (3.46).

49



CHAPTER 3. REFLECTION AT TIME DEPENDENT MAGNETIC FIELDS

3.4. Calculation of the current j⊥

The current j⊥(x′, t′, ky) as the source of the induced photon field can be expanded in powers of
(eB)2, i.e.

j⊥(x′, t′, ky) = j⊥,(0)(x
′, t′, ky) + (eB)2 j⊥,(2)(x

′, t′, ky) +O
(
(eB)4

)
, (3.48)

where the expansion coefficients are given by

j⊥,(0)(x
′, t′, ky) =

∫
dx′′

∫
dt′′Π⊥,(0)(x

′ − x′′, t′ − t′′, ky) a⊥,in(x′′, ky, t
′′), (3.49)

j⊥,(2)(x
′, t′, ky) =

∫
dx′′

∫
dt′′ Π̃⊥,(2)(x

′, x′′, t′, t′′, ky) a⊥,in(x′′, ky, t
′′). (3.50)

The polarization tensor at the lowest order n = 0 is still invariant with respect to translations,
since it does not depend on the magnetic field. We thus expect this order to vanish, which is
confirmed by an explicit calculation. It is advantageous to not employ the special representation
of the polarization tensor Eq. (3.46), but instead leave the evaluation of the momentum integrals
for a later stage. Furthermore, we only consider an ingoing plane wave

ain(x′′, ky, t
′′) = ei(kinx′′−ωint

′′) (3.51)

with photon energy ωin =
√
k2

in + k2
y. The lowest order of the current is then given by

j⊥,(0)(x
′, ky, t

′) = − α

4π

∫
dx′′

∫
dt′′
∫ 1

0
dν

(
ν2

3
− 1

)
ν2

∫
dkx
2π

∫
dω

2π(
k2
x − ω2 + k2

y

)2
φ0

eikx(x′−x′′)−iω(t′−t′′) ei(kinx′′−ωint
′′). (3.52)

Switching the order of integration, i.e. first performing the x′′- and t′′-integrals, yields delta-
functions

2π δ(kx − kin) 2π δ(ω − ωin) (3.53)

and, upon evaluation,

j⊥,(0)(x
′, ky, t

′) = − α

4π

∫ 1

0
dν

(
ν2

3
− 1

)
ν2

(
k2

in − ω2
in + k2

y

)2
m2 − iε+

(
k2

in − ω2
in + k2

y

)
1−ν2

4

ei(kinx′−ωint
′)

≡ 0 ,

(3.54)

because ω2
in = k2

in+k2
y. Since we can generate wave packets of arbitrary shape by the superposition

of plane waves, this result also holds for the general case of arbitrary incoming photon beams. As
expected, the effect of quantum reflection manifests itself again as an effect which is suppressed
by at least B2/B2

cr on the level of the reflected field aref . The second order current j⊥,(2)(x
′, ky, t

′)
cannot be evaluated easily, since the inclusion of an inhomogeneous magnetic field breaks the
translational invariance. Furthermore, it does not seem possible to reach a closed expression for
the reflection coefficient for arbitrary magnetic fields as was done in the last chapter. Rather,
one has to specify the spatial and temporal variation B(x, t) early in order to solve the remaining
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integrals. A promising generic shape, which is sufficiently close to experimental reality, might be
given by a Gaussian spatial and temporal profile exhibiting a temporal modulation, i.e.

B2(x, t) = B2e
−
(

x
λx

)2

e
−
(
t
λt

)2

eiωmt. (3.55)

Especially the inclusion of the temporal modulation, which is an inherent property of laser beams,
might give an extra handle to increase the effect of reflection in analogy to the static case. The
computation of the current for such a profile is still under investigation.
Once the current is calculated, one still has to find an expression for the induced field by

means of the equation (3.13). The integrals are not easy to evaluate due to the Bessel-function
contained in them. However, physical results for the induced field should exhibit some basic
properties, which are a direct consequence of the spatial and temporal locality of the inhomo-
geneity. For asymptotic times t → ∞, the induced wave should reduce to basically two parts,
which correspond to reflected and induced contributions. These should only depend on the rel-
ative coordinates x + c̃ t and x − c̃ t respectively, where c̃ = c̃(ky) > 0 denotes a constant. By
means of singling out these contributions, one can therefore in principle compute the reflection
coefficient via Eq. (3.23), which in the end should not depend on the position x = −L of the
detector and, formally, the limit L→∞ can be taken as was done in the static case.
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4. Conclusion and outlook

This work dealt with the investigation of quantum reflection as a new means to probe the QED
quantum vacuum nonlinearity. The main body of this thesis examined this phenomenon for the
case of static magnetic background fields and the obtained results can be considered as first
estimates for the effects expected to be observed in feasible high intensity laser experiments.
Naturally, the treatment has to be extended to involve the time dependency as well. Spatial
and temporal variations of the field strength were required to be large compared with Compton
wavelength of the involved virtual particles. In the context of QED, practically all available high
intensity laser systems in the optical region comply easily with this restriction. Contrary to the
traditional signatures of the QED vacuum, which were briefly outlined in the introduction, quan-
tum reflection manifestly requires an inhomogeneous background field. This fact necessitated the
treatment of the problem in position space and hence information about the entire momentum
dependence of the photon polarization tensor had to be maintained. In particular, no a priori
approximation to on the light-cone dynamics can be applied, which considerably complicates the
calculation for the time dependent case.
In the second chapter, two different strategies of deriving the reflection coefficient were pre-

sented. Especially the second derivation via the quantum mechanical analogy highlights the
close connection of optical quantum reflection with the case of atomic quantum reflection, as was
already mentioned in the introduction. The resulting equation for the reflection coefficient in the
static case turned out to be particularly simple and allowed the study of a plethora of different
beam profiles in order to maximize the effect. The exploitation of this freedom, while inter-
esting and enlightening, is also highly necessary, since in addition to the suppression stemming
from the fourth order coupling (B/Bcr)

4, reflection is usually further suppressed exponentially
in the reduced frequency ω̃. However, sizable rates of reflection for current laser systems could
already be achieved by considering varying angles of incidence β as well as utilizing modulated
as well as 4π focused laser pulses. Near-future laser facilities such as ELI will provide additional
improvement by drastically increasing the maximum field strength available.
The last chapter depicted a first attempt to generalize the treatment to space and time depen-

dent background fields. While the calculation of the Green’s function as well as the zeroth-order
current for this case could be achieved in a straightforward manner, the inclusion of generic
background beam shapes is still not completed. Additionally, a possible definition of the reflec-
tion coefficient for the time dependent case was given. It seems rather challenging to estimate
the effect of temporal variation on quantum reflection. However, since we have observed that
a modulated inhomogeneity can help to overcome the exponential suppression, and that such a
modulation ωm will likely be induced by the temporal oscillation of the background field, the
prospect seems promising at first sight. Hence, it might not even be necessary to experimentally
realize very complicated field profiles in order to yield measurable reflection rates.
Of course, solving the time dependent case is the most pressing issue at the moment, since it

would allow for solid quantitative predictions with regard to a possible experimental realization.
However, there are many alternative aspects which deserve attention. First of all, in contrast to
this work which dealt within a weak field approximation one can also investigate the strong field
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limitB/Bcr � 1. Although such a treatment does not possess any connection to currently feasible
experiments, it opens up the possibility to study manifestly non-perturbative effects. A deeper
investigation of the Lorentz potential 1/(1+x2) also falls under this category. Secondly, a further
generalization and a way to ease the not to be underestimated experimental confinement to purely
magnetic background beams is given by the investigation of crossed field configurations with non-
vanishing electric and magnetic field components. Exact solutions of the photon polarization
tensor in such backgrounds to one loop order have been obtained, as was already mentioned
at the end of chapter 1. However, it is not certain that such a setup would permit the simple
treatment of the tensor structure of the equations of motion, as was possible in the present work
for the case of a purely magnetic background field. Consequently, this necessitates a detailed
inspection of how specific photon polarization modes are affected and mixed by inhomogeneous
magnetic and electric background fields, which also constitutes an interesting effect in its own
regard.
All of the aforementioned aspects eventually deserve attention on the path to a more accurate

description of the phenomenon of optical quantum reflection and its subsequent utilization as a
means to probe the QED vacuum. Hopefully, this work was able to give first insights into the
effect of quantum vacuum reflection and help establish its feasibility as a possible complementary
signature of the quantum vacuum nonlinearity.
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A. Notation and conventions

Throughout this work we work in the Heaviside-Lorentz system and use natural units, i.e.

~ ≡ c ≡ 1. (A.1)

In this system, the unit of electric charge e is related to the fine structure α by

e =
√

4πα ≈ 0.303 . (A.2)

As a convention for the flat Minkowski metric, we choose

gµν = gµν = diag (−1, 1, 1, 1). (A.3)

Greek indices run from µ = 0, . . . , 3, while Latin indices run from i = 1, . . . , 3. Indices, which
occur twice in a single term, are being summed over in accordance with the Einstein summation
convention. The components of the momentum four-vectors k in Minkowski space are given by
kµ = (ω, kx, ky, kz) = (ω,k). The spatio-temporal four-vector x uses Roman letters to denote its
spatial components, i.e. xµ = (t, x, y, z) = (t,x). Bold quantities represent ordinary Euclidean
vectors in three-space, the corresponding unit vectors are given by ex, ey and ez. The only
exception was made in chapter 3. There, e and b denote the Euclidean electric and magnetic
field strength vectors respectively and ei, bi their components. The product of two four-vectors
is given by

kx = −ωt+ k · x = −ωt+ kxx + kyy + kzz. (A.4)

The γ-matrices in their standard representation

γ0 =

(
1 0
0 −1

)
and γi =

(
0 σi

−σi 0

)
(A.5)

satisfy by definition the anti-commutation relations{
γµ, γν

}
= −2gµν . (A.6)

The Pauli matrices are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(A.7)

and the matrices σµν are defined by

σµν :=
i

2

[
γµ, γν

]
. (A.8)

The Feynman slash denotes a contraction of a four-vector with γ-matrices, i.e.

/a = γµa
µ = −γ0a0 + γiai. (A.9)

In our metric, the electromagnetic field strength tensor Fµν = ∂µaν − ∂νaµ is given by

Fµν =


0 E1 E2 E3

−E1 0 B3 −B2

−B2 −B3 0 B1

−B3 B2 −B1 0

 . (A.10)
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Since many results involve the evaluation of numerical values, let us give the conversion factors
between SI-units and natural units:

Quantity SI-unit Natural unit
Length 1 m 5.07 · 106 eV−1

Time 1 s 1.52 · 1015 eV−1

Mass 1 kg 5.61 · 1035 eV
Energy 1 J 6.24 · 1018 eV
Intensity 1 W/cm2 1.59 · 10−6 eV4

Power 1 W 4.11 · 103 eV2

Magnetic field strength 1 T 195.5 eV2

Electric field strength 1V/m 6.5 · 10−7 eV2

Fourier transformations

We switch between position and momentum space by means of the Fourier transformations

aν(x) =

∫
d4k

(2π)4
aν(k)eikx and Πµν(x, x′) =

∫
d4k

(2π)4

∫
d4k′

(2π)4
eikxΠµν(k, k′)eik

′x′ .

(A.11)
Furthermore, throughout the paper there are performed partial Fourier transformations on either
only one spatial component, i.e.

aν(x, ky, kz, ω) =

∫
dkx
2π

aν(k)eikxx,

Πµν(x, x′, ky, k
′
y, kz, k

′
z, ω, ω

′) =

∫
dkx
2π

∫
dk′x
2π

eikxxΠµν(k, k′)eik
′
xx′ ,

(A.12)

or on one spatial and the temporal component, i.e.

aν(x, ky, kz, t) =

∫
dkx
2π

∫
dω

2π
aν(k)ei(kxx−ωt),

Πµν(x, x′, ky, k
′
y, kz, k

′
z, t, t

′) =

∫
dkx
2π

∫
dk′x
2π

∫
dω

2π

dω′

2π
ei(kxx−ωt)Πµν(k, k′)ei(k

′
xx′−ω′t′).

(A.13)
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B. Gaussian beams

A short overview of the properties of Gaussian beams, propagating along the z-axis, is given (see
for example [41]). The Gaussian beam is a special solution of the paraxial approximation to the
Helmholtz equation. The amplitude B(r, z), where r denotes the radial coordinate, is given by

B(r, z) = B0
w0

w(z)
e
−
(

r
w(z)

)2

e
−ik r2

2R(z) ei(ζ(z)−kz), (B.1)

with

w(z) = w0

√
1 +

(
z

z0

)2

, beam radius, (B.2)

R(z) = z

(
1 +

(z0

z

)2
)
, radius of curvature, (B.3)

ζ(z) = arctan
z

z0
, Gouy phase shift, (B.4)

z0 =
πw2

0

λ
, Rayleigh length. (B.5)

The beam radius w(z) indicates the radial position at which the field declined to 1/e of its
maximum value at r = 0. It is characterized by the waist 2w0, which denotes the smallest
extension of the laser beam. The Rayleigh zone extends from −z0 to z0 and marks the region
of the biggest change of the laser beam, i.e. the transition from a plane wave for z ≈ 0 to an
approximate spherical wave for z� z0. The beam radius in the focus z ≈ 0 is almost constant,
while it increases linearly for large z. The radius of curvature R(z) near the focus resembles that
of a plane wave, i.e. R(z→ 0)→ 0, while in the far field it increases linearly with z as well. The
Gouy phase shift accounts for an extra phase shift near the focus compared with plane waves.
In the center of the beam, i.e. z = 0, the transversal profile is given by a Gaussian profile

B(r, 0) = B0 e
−
(
r
w0

)2

. (B.6)

For the specific case of quantum reflection, we consider the background beam radius in the focal
spot as constant and furthermore assume f -numbers of f# = 1. Therefore, the beam radius
is given by w0 = λ and the Rayleigh length by z0 = πλ. At the Rayleigh length, the waist of
the Gaussian beam increases to w(z0) =

√
2w0. If the probe beam hits the background beam

under an angle of β, it traverses the background beam in the longitudinal direction on a scale
(2 tanβ2λ). For our assumption of a nearly constant waist size in the interaction region to be
valid, we require the longitudinal distance to be of not more than twice the Rayleigh length.
This leads to an upper limit on the angle β, which is given by

tanβ .
π

2
→ β . 58°. (B.7)

Hence, we should strive to achieve incidence angles β below this maximum value as such setups
comply better with the approximation of a nearly constant background beam radius w0.
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