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1 Introduction

An ongoing challenge in the field of laser technology is the development of high-power laser sys-
tems delivering ultrashort pulses while maintaining nearly ideal beam characteristics. Nowadays,
these lasers find application in many areas such as in industry, medicine, and science. For exam-
ple, in material processing a high production quality can be achieved with the help of high-energy
ultrashort pulses, which prevents the melting of the material and, therefore, preserves marginal
areas [1]. On the other hand, such laser systems find also application in research fields such as
High-Harmonic Generation (HHG) [2, 3].

There are different laser technologies that have been used so far. Thereby, the geometry of the
active medium plays an important role, whereas optical fibers quickly distinguished themselves
by their outstanding advantages. Fibers are waveguides that have a large surface to volume
ratio. Therefore, they exhibit excellent thermal properties and beam quality. Thus, they are
well-suited for high-power applications.

Typically the desired output power is obtained by using both an oscillator, which provides low-
energy high quality pulses, and a chain of amplifiers, in this case fibers, which amplify the signal
to high power. This concept is known as Master Oscillator Power Amplifier (MOPA) [4]. How-
ever, the progress of this approach has been hampered by the onset of nonlinear and thermo-optic
effects, which may cause spatial, temporal and spectral distortions of the pulsed beam. The miti-
gation of these detrimental effects is the main challenge in trying to reach even higher output
powers. For this, the intensity inside of the signal core of the amplifying fiber has to be reduced
by many orders of magnitude. One way to achieve this is the use of fibers with large mode-field
diameters, so-called Large-Mode Area (LMA) fibers. However, the scaling of the mode-field di-
ameter is typically restricted by production tolerances of the particular fiber design. Another
possibility is the use of the so-called Chirped-Pulse Amplification (CPA) [5] technique. Thereby,
a pulse delivered by an oscillator is stretched in time by imposing a chirp to it. As a result, the
peak power is significantly reduced. Then, the stretched pulse is amplified to high power and,
subsequently, the chirp is removed. Hence, the compressed pulse duration is comparable to that
of the initial pulse. This results in a very high peak power, which exceeds the one achievable
without this technique. However, the geometrical dimensions of the laser system usually restrict
the available stretched pulse duration. While for pulse stretching passive fibers or small-footprint
multi-pass grating stretchers can be employed, compression stages usually have to be realized
using a single-pass grating compressor in order to achieve high efficiencies and in order to handle
high peak-powers in the gigawatt range. Thus, for CPA system it is the width of the employed
grating and the available length of the compressor (i.e. the achievable delay), which restrict the
maximum stretched pulse duration to a few nanoseconds. With these techniques average output
powers of 830 W [6] and pulse energies of 2.2mJ [7| have already been reported.

To further scale the output power, the approach of beam combination [8] has become a viable
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alternative. The idea behind this is to combine the output beams of several individual lasers into
one intense beam. This approach ideally allows increasing the overall output power by a factor
that equals the number of lasers to be combined. In order to apply this technique to the am-
plification of ultrashort pulses, the pulses emitted by the different lasers have to possess a fixed
phase relation with each other. To achieve this, one input laser is used whereby its beam is split
into a certain number of beams, which are amplified in spatially separated amplifiers and which
are finally coherently combined. Thus, this technique is referred to as Coherent Beam Combin-
ing (CBC). Since this results in an interferometric setup, the path lengths have to be matched,
which can be realized by actively controlling the phases. Using CBC with active-feedback a
record pulse energy of 3mJ [9] was reported.

An elegant possibility is to use the Sagnac geometry, i.e. one input beam is split into two counter-
propagating beams passing through the same optical path and amplifier. These pulses can be,
afterwards, passively combined [10]. However, in this implementation the initial pulse is just
split in two pulses. A further possibility is to divide the pulses temporally before amplification
and to recombine them afterwards. Initially, this approach was demonstrated using birefringent
crystals for division and combination and it is referred to as Divided-Pulse Amplification (DPA)
[11, 12]. This technique has already been successfully integrated into a passive CBC setup using
the Sagnac geometry [13], but since the crystals provide delays of only a few picoseconds, this
experiment was performed using non-stretched pulses. For such a passive CBC approach using
DPA a pulse energy of 3.111J was reported.

The aim of this work is the implementation of the passive CBC and DPA approach (short passive
DPA) as the main amplification stage in an existing CPA system. Therefore, an experimental
setup will be developed, which is capable of producing temporal delays in the nanosecond range.
This setup will be investigated both theoretically and experimentally.

In the following chapter, theoretical basics of ultrashort pulses and some characteristics of light,
such as polarization and interference, will be explained briefly. Moreover, the most important
detrimental effects caused by the propagation through solid media will be explained, too. In the
third chapter, the topic of beam combination will be classified and considered in more detail.
Furthermore, different approaches will be presented, whereas the focus will be on CBC. Chapter
four deals with the experimental realization and with the characterization of the setups used for
the experimental demonstration. Finally, the whole work will be summarized briefly and a short

outlook of further investigations will be given.



2 Ultrashort Laser Pulses

The aim of this work is the amplification of ultrashort pulses in high-power fiber amplifiers. In this
context, some theoretical basics are explained in the following. First, the theoretical description
of pulses and some physical quantities will be presented. Afterwards, both the properties of
polarization and interference are considered, which will be important for the scheme of CBC
used in this work. Finally, the effect of dispersion and nonlinear effects on the ultrashort pulses

propagating through optical fibers will be discussed.

2.1 Description of Ultrashort Pulses

Light is an electromagnetic wave and its physical nature is described by the Maxwell’s equations.
Due to the harmonic time dependence of the real' electric field in space? E(r,t), it is possible to

introduce a representation of the field, which satisfies those equations:
1 .
E(r,t) = 5 {Eg exp [i(kr — wpt)] + c.c.} (2.1)

and is called plane wave®. Thereby Eq is the field amplitude, wy is a certain angular frequency
and k is the wave vector. Since Eq. (2.1) describes a stationary, infinite wave train oscillating at
one frequency, this representation holds only for monochromatic light.

In the case of optical pulses this description must be extended. Since in general a pulse is of finite
extent in both space and time, it can be expressed by a superposition of stationary plane waves
with different frequencies and propagation directions. The electric field can be decomposed into
infinite wave trains with the help of the Fourier transformation (see Appendix A), which results
in [14]

E(r,t) :% / / E(k,w)exp [i(k(w)r — wt)] dkdw + c.c. p (2.2)

—00 —O0

with ]:](k, w) being the spectral components. Consequently, a pulse is a polychromatic wave. To
simplify this mathematical expression it is assumed that all wave trains of the pulse propagate
in the same direction, namely along the z-axis, and that the transverse energy distribution
is constant over the pulse. Furthermore, an approximation often used is the so-called Slowly
Varying Envelope Approximation (SVEA) [15]. In this approximation it is assumed that the

envelope of a pulse varies slowly in space and time compared to the rapidly oscillating field.

'Real part of a complex quantity: 2R {2} = z + zx = 2 + c.c., with c.c. denoting the complex conjugate.
2Boldface symbols denote vectors in three-dimensional space (z, v, 2).
3 Analogous for the magnetic field, which will not be considered.
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This assumes that just those spectral components within a narrow band Aw around the center
frequency wg contribute significantly. Using these assumptions, the electric field can be expressed
as [14, 16|

ot 3

E(r,t) ~ 1F(:l:, y) { exp(—iwot) E(w)expli(k(w)z — (w—wp)t)]dw + c.c. p % (2.3)
2

- %F(g;, y) [A(z,t) exp(—iwot) + c.c] % (2.4)

with k denoting the z-component of the wave number, X an unit vector oriented in z-direction,
F(x,y) the transverse energy distribution, and A(z,t) the complex (slowly varying) amplitude.

The spectral components can now be expressed as

E(w) = [Bw)|exp ligw)] (2.5)
with the spectral phase ¢(w). Now the wave vector can be developed in a Taylor series

= d"k(w)

dw™

k(w) =

(w—wo)™ . (2.6)

w=wq

m=0

The zeroth order term describes the phase velocity of E(wg) given by v, = wo/k(wo), while the

-1
w=wo>

first order term defines the group velocity vy = (dk(w)/dw) which describes the energy

propagation. When omitting the energy distribution F'(z,y), Eq. (2.4) changes to
1
E(r,t) = 3 {A(z,t) exp [i(k(wo)z — wot)] + c.c.} X . (2.7)

Another important parameter of a pulse is its duration At. There are different definitions
for this parameter, but throughout this work the Full Width at Half Maximum (FWHM)
will be used. The shortest achievable pulse duration is limited by the spectral bandwidth
Av = Awpwnm/(27). The Time-Bandwidth Product (TBP) [4] summarizes the relationship
between the pulse duration and the spectral bandwidth:

AtAv > TBP | (2.8)

the TBP is a constant that depends exclusively on the pulse shape. Typically, the lower limit of
this inequality, i.e. the so-called transform limited pulses, is reached when the spectral phase of
the pulse is linear. A pulse is called ultrashort if At < 1ps.

A commonly used example is a Gaussian pulse. In that case the TBP is 0.441 and the complex

amplitude is given by [17]

—~ 2
A(z,6) = VPexp <—21n(2) A’}) , (2.9)
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Fig. 2.1: Representation of (a) the electric field and the envelope of a transform
limited ultrashort Gaussian pulse with At = 20fs and (b) its correspon-
ding spectrum with a bandwidth of AX =~ 78 nm at a center wavelength
of A\g = 1030 nm.

with P being the peak power of the pulse. In Fig. 2.1 a transform limited ultrashort (At = 201s)
Gaussian pulse and its corresponding spectrum are depicted. This short pulse duration (near
the limit of the SVEA) was chosen in order to show the fast oscillations of the electric field.
There are important physical quantities that are commonly used to characterize a pulse or a
series of pulses. Thus, for a single pulse, the instantaneous optical power P(r,t), intensity I(r,t)
and the field amplitude A(r,t) are related by [18]

P(r,t):/Al(r,t)dA:C|A(r,t)|2 , (2.10)

where C' comprises all the constant factors. This expression describes the spatial and temporal
distribution of the power, whereby its maximum is the peak power P. TFor a series of pulses
the repetition rate fip, = 1/T" describes the periodicity with which the pulses are emitted. The

power measured by a power meter is given by the spatially resolved average power [18]
_ . 1
P(r) = lim — [ P(r,t)dt . (2.11)

Finally, the energy content is described by the pulse energy, which is given by [18§]

E, = / /P(r,t)dtdr:fip , (2.12)

—00 —00

where P is the overall average power. The peak power can be determined by

. E
P=cCc-2 2.1

where At is the pulse duration and C' is a constant factor depending on the pulse shape.
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2.2 Polarization of Light

The polarization of an electromagnetic wave is a three-dimensional phenomenon that describes
the temporal evolution of the orientation of the electric field vector at any position in space.
The state of polarization is determined by the relationship between the components of the field

vector, which can be written as vector addition [18]

1
E(r,t) = 3 [Ex(r,t)X + Ey(r, )y + E,(r,t)z +c.c] . (2.14)
In the case of paraxial fields, the electric field vectors can be considered to lie in transverse planes
propagating in the same direction. Consequently, when propagating along the z-axis, E,(r,t)
can be neglected. Comparing with Eq. (2.7), for an ultrashort pulse it follows

E(r,t) = - [Ax(z, )X + Ay (2, t)§] exp [i(k(wo)z — wot)] + c.c. (2.15)

DN |

with the complex (slowly varying) amplitudes that can be expressed as
Ale,t) = |Axz Dlexp lige®] Ay(nt) = Az Dl expligg ()] . (216)

In general, the phase relation and, therefore, the polarization state can vary in time, which
is referred to as partial polarization. This time dependence will be neglected for the case of
fully polarized light. The evolution of the field vector is defined by the oscillations of the two
orthogonal amplitudes and its relative phase ¢ = ¢, — ¢x. Considering a particular plane
of incidence, the component lying in that plane (e.g. z-component) is called p-polarization
component, while the component being perpendicular to that plane (e.g. y-component) is called
s-polarization component®. Thus, the state of polarization is identified by the z-y-projection
plane. For arbitrary amplitudes and phases, according to Eq. (2.16), the field is in general
elliptically polarized. Nevertheless there are two widely used degenerated polarization states:
linear and circular. For the first case the oscillations of the components have a phase difference
¢ =2mm (m = 0,1,2...), which is shown in Fig. 2.2a for an ultrashort pulse. The orientation
angle 1 of this linear polarization depends furthermore on the magnitudes of the amplitudes and

is given by [19]
2| A (2, )] A, (2, 1) cos 6

tan(2¢) = ‘Ax(z7t)|2 — |Ay(2,t)|2

(2.17)

For |Ax(z,t)| = |Ay(z,t)| this results in ¢ = 45°. In the case of circular polarization the phase
between the components is ¢ = (2m — 1)7/2 and it requires also that |A(z,t)| = |Ay(2,t)]. A
distinction is made for ¢ = w/2 and for ¢ = —7/2, which are called right-handed and left-handed
circularly polarized, respectively. Fig. 2.2b shows a right-handed circularly polarized ultrashort

pulse’.

“From the German words parallel and senkrechi.

5Since the amplitude of the oscillations changes in time, this would lead to a spiral for the projection of any
polarization other than linear polarization. Therefore, just the superposition of the oscillations with constant
amplitudes are plotted. Due to the different scale ratio it seems to be elliptical, but it is actually a circle.
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(a) (b)

Fig. 2.2: Representation of a polarized ultrashort pulse with At = 20fs and
Ao = 1030nm. Its components are projected in the respective x- and
y-planes, additionally its projection against the propagation direction is
shown, (a) for linear polarization and (b) for circular polarization.

Isotropic optical materials are polarization independent. To achieve a phase difference between
the field components, materials with polarization-dependent properties are used. These are
called anisotropic materials, which is here limited to uniaxial materials. They possess one axis
of symmetry (the optical axis) with isotropic properties for directions perpendicular to it. Those
polarization components perpendicular and parallel to that axis will experience different refrac-
tive indexes n, and ne (subscripts denoting ordinary and extraordinary). Such a material it is
said to be birefringent. There is a maximum phase difference that the polarization components
can accumulate, which depends on the propagation length [ through the material [17]:

2
AQD = Pe — Po = Tl(ne - no) . (218)

For known (n. — n,) the maximum phase difference for a certain wavelength A\ can be adjusted
with [. This is used, for example, for the so-called Half-Wave Plates (HWPs) and Quarter-Wave
Plates (QWPs), which maximum phase differences are Ap = 7 and Ay = /2, respectively.
The effect of a HWP is to rotate the orientation angle of linearly polarized light, and the effect
of a QWP is to generate elliptical polarization out of linear polarization and vice versa. For the
special case of a 45° orientation between the linearly polarized input and the optical axis of the
QWP, circular polarization is generated.

One convenient mathematical formalism to handle the state of polarization of light is the Jones
matrix calculus [19]. This formalism is only valid for completely polarized light, which is the case
dealt with in this work. The vector including the two field components, as given by Eq. (2.16),
is called Jones vector and it will be represented by A. To describe the polarizing devices, 2 x 2
matrices are used, which are called Jones matrices and are represented by J. The input and the
output of such a device are then related by Ayt = JAjn. In Tab. 2.1 the Jones matrices for a
linear polarizer with transmission coefficients ¢ and for a wave plate are listed. Furthermore, these
may be rotated by an angle 6 with respect to their optical axis. In the experiments described in
this work the rotation of a HWP will be used. With the help of the rotation matrix R(€) (see
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Tab. 2.1: Jones matrix for a linear polarizer and a wave plate.

Optical Element ‘ Jones Matrix

Linear polarizer Jp = (tx 0>

0 ty
for ideal p-polarization for ideal s-polarization
1 0 0 O
= o) (o 1)
exp [igo] 0
Wave plate Jwp = .
0 exp [ie]

Half-Wave Plate (Ap = ) Quarter-Wave Plate (Ap = 7/2)

. 1 0 . 1 0
Juwp = exp (ipo) Jawp = exp (ivo) .
0 -1 0

—1

Appendix B) it follows [19]

cos(20)  sin(20) ) (2.19)

Juwr(8) = (sin(29) — cos(260)

where the constant phase term is neglected.

2.3 Interference

Interference is a phenomenon, which occurs for all kinds of coherent waves. The superposition
of two or more waves in space and time results in a wave that consists of the sum of all indi-
vidual waves. This may lead to regions of enhancement or cancellation of the fields depending
on their relative phases, which are then called constructive or destructive interference, respec-
tively. In optics, this holds for the superposition of the complex field amplitudes in the case of
monochromatic light of the same frequency [18]. However, ultrashort pulses are polychromatic.
Nevertheless, since the bandwidth of the ultrashort pulses of interest for this work is assumed
to be narrow, they will be treated as quasi-monochromatic. The superposition of two identical

ultrashort pulses propagating in the same direction can be expressed as
E(r,t) = Ai(z,t — 1) exp [—iwo(t — 71)] + Aa(2z,t — 7o) exp [—iwo(t — T2)] (2.20)

(complex conjugate terms omitted) with the time delays 7,,, = k(wo)zm/wo corresponding to
different propagation distances z,, (where m = 1,2). The observable real effect of interfe-
rence are regions with minimum or maximum intensity. Using the definition of the intensity®
I(r,t) ~ (E(r,t)E*(r,t)) (according to [18], constant factors neglected), it follows after some

5The operator (-) denotes time average over a long period.
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E(z,1)/Emax(z,t
o
> o
<7
1 |
13

I(z,7)/(210(2))

nfd A
1.1\ H‘\H\u
-
HH
‘
AL

L\t
AL
-y

0.5 LalL
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Fig. 2.3: Respresentation of (a) the superposition of two identical Gaussian pulses
with At = 20fs (compare Fig. 2.1a) delayed by 7 = 20fs and (b) the
interference depending on the delay.

calculation that [18§]

I(r,t) = Ii(r,t) + Ix(r,t) + 2o/ 1 (r, t) Ia(x,t) |y(71,72)| cos [Ap(T1,T2)] (2.21)

Interference term

with I, (r,t) ~ [Am(z,t — 71n)|? being the intensities of the individual pulses (where m = 1,2),
Ap(T1,7) = wo(T2 — 71) being the phase difference between them and the complex degree of

coherence [18§]
(A1(z,t —11)A5(2,t — T2))

Il (I‘, t)IQ(I', t)

v(11,72) = , (2.22)

which is a measure of the temporal coherence. Temporal coherence describes the ability of a
wave train to interfere with a time-delayed copy of itself. By writing m = 0 and 7 = 7, then
Eq. (2.22) acquires the form of a normalized autocorrelation function. For |y(7)| = 1 light is
fully coherent, for 0 < |y(7)| < 1 partially coherent and for |y(7)| = 0 it is incoherent. Generally,
in the case of partial coherence the correlation is limited to a certain time range, which is called
coherence time 7. and it is defined as the FWHM of |y(7)|. Within this time, light can propagate

the distance [14, 18]
2

le =crc = C’% , (2.23)
which is called coherence length. Obviously, the coherence time is inversely related to the band-
width AX = Adpwnam. The constant factor C' depends on the spectral shape and it is, for
example, 1 for a rectangular shape and \/W for a Gaussian shape [18]. However, the
full description of coherence for ultrashort pulses is more complicated and it requires a complex
treatment of coherence theory, which is not considered here. As an example, using Eq. (2.23) the
coherence time and length of the pulse depicted in Fig. 2.1 would be 7. ~ 30fs and [, =~ 9 pm.
But there is also a coherence time, which describes the long-term relationship of the waves. Since
for a series of pulses the spectrum in Fig. 2.1b would be a frequency comb spanning under the
envelope, the coherence time is determined by the spectral widths of the single peaks. Conse-

quently, the bandwidth may be much smaller and results in a longer coherence time than that of
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a single pulse [20]. Just as an example, the superposition of two equal linearly polarized Gaussian
ultrashort pulses shifted by 7 = 7 (71 = 0) is shown in Fig. 2.3a. In Fig. 2.3b the corresponding
interference (after Eq. (2.21)) at the maximum with IJ***(r,t) = I3"*(r,t) = Iy(z) with respect
to 7 is plotted. As can be seen, when the pulses are in phase (7 = 0), the total intensity gets
doubled.

2.4 Propagation in Solid Media

If light propagates through media different from vacuum, nonlinear effects and dispersion are
present. The influence of the former becomes higher the higher the optical power. Since ultrashort

pulses can achieve very high peak powers, these effects cannot be neglected.

2.4.1 Dispersion

The dependence of a physical quantity on the frequency is called dispersion. There are different
kinds, such as material or angular dispersion, but they are all related to the frequency dependence

of the refractive index n(w). A good approximation is the Sellmeier equation’ [16]

N
B 2
niw) =14 Y -

m=1

: (2.24)

Y
Wi, — W

with the material-dependent parameters B,, and wy,. In Fig. 2.4a the frequency dependence of
the refractive index of silica with N = 3 is depicted. It is normally distinguished between the case
of normal dispersion (when dn(w)/dw > 0) and anomalous dispersion (when dn(w)/dw < 0).

To simplify further considerations, according to Eq. (2.6), it is common to introduce the abbre-

viations [16]

d™k

~ dwm

Brm with fo= -2 | 512i , B2 d <1> : (2.25)

w=wo Up Vg dw \ vg

Hence, the parameters fy and 31 determine the phase velocity and group velocity of the pulse,
respectively, while B2 is the Group Velocity Dispersion (GVD), which is responsible for the
broadening of the pulse. A medium with 82 > 0 exhibits normal GVD, which after propagation
of a pulse results in a so-called positive chirp, since the low frequencies of the pulse propagate
faster than the high frequencies. Thus, the frequency components of a pulse are rearranged under
its envelope. The opposite occurs for anomalous GVD and results in a negative chirp.

As a rough estimation, the increase of the pulse duration At after a propagation length L due

"Far from resonances of the bound electrons of the medium.

10
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Fig. 2.4: Influence of material dispersion. (a) Variation of the refractive in-
dex with the wavelength A\ = 27mc/w for silica (after [16]). (b)
Broadening and frequency chirp of the ultrashort Gaussian pulse from
Fig. 2.1a (shown in grey) when travelling through 10mm of silica
(B2 =~ 20ps?km ™! [16]).

to material dispersion can be estimated by [21]

At = L = A(At) = Aw ((W) = AwfaL . (2.26)
Vg dw / —uo

Obviously, the pulse broadening becomes more dramatic the broader the bandwidth of the pulse
and the longer the interaction length with the material. Consequently, for ultrashort pulses the
effect of material dispersion is not negligible. For the example of a Gaussian pulse, the dispersed
pulse can be analytically calculated. Using the envelope function of Eq. (2.9), after calculating
its spectrum (according to Appendix A), and after considering the first and second order terms
of Eq. (2.6) and by using the abbreviations of Eq. (2.25), it follows

\/]TD 21n(2)(t — B12)? Cz 2In(2)(t — B12)?
A(z,t) = jexp <— ( )(Atg fiz) )exp (ZLD ( )(Atg fi2) > , (2.27)

Lp

with the dispersion length Lp and the pulse duration At, after a distance z

AP
© 41n(2)B

2
and At = Aty |1+ (Z> . (2.28)

L
D o

Finally, the electric field is given by Eq. (2.7). Fig. 2.4b shows an ultrashort Gaussian pulse after
propagating through z = 10 mm silica.

One approach that benefits from dispersion is the CPA [5]. With the help of a dispersive delay
line, called stretcher, a pulse is stretched in time domain. This reduces the peak power during
the propagation through an amplifying medium and, therefore, the occurring nonlinear effects
are effectively mitigated. With this technique, much higher output powers are achievable. Sub-
sequently, another dispersive element, called compressor, removes the chirp and compresses the

pulse to its initial duration.
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2.4.2 Nonlinear Effects

In conventional optics, when an electromagnetic field interacts with a material, this becomes
polarized and the polarization P(r,t¢) depends on the electric field strength E(r,¢) in a linear
manner. If the field is strong enough, the optical response follows a more complicated function
and it can, in the most general case (including loss and dispersion), be expressed in frequency
domain as a power series® of the form [22]
P(r,w) = ¢ <X(1) . E(r, w) + MO E(r, w)E(r,w) + 3 E(r, w)E(r, WEr,w) +--- ],
(2.29)
with €y being the permittivity of free space and x™ being the mth-order of the susceptibility
tensor. For low field strengths the higher orders can be neglected, which results in the case of
linear optics. For high field strengths, as those typically achieved with ultrashort pulses, the
higher orders, especially the second and third order terms, play an important role. There are
plenty of different nonlinear effects, but the explanations in the following are restricted to two
of the third order effects, which are those relevant for this work.
For many materials, the refractive index is dependent on the intensity I(z,t) ~ |A(z,t)|* due to
the third order susceptibility. Assuming the material responds instantaneously to the pulse, the

modified intensity-dependent refractive index is (for linearly polarized light) [22]

i(w, |[A(z, )]} ~ n(w) +ng |[A(z,0)]* with  ng =
A

(2.30)

which is known as the optical Kerr effect. The n(w) represents, as before, the dispersive weak-
field refractive index and the coefficient ng is sometimes called the nonlinear refractive index.
Consequently, the phase velocity depends on the temporal intensity profile and yields a time-

and intensity-dependent phase shift

b(2,1) = %'ﬁ(w, 1Az, 1))z — wot = Blw)z + na |Az, 1)[? %z —wot (2.31)

ONL(2,t)

When propagating on length z through a medium, this additional nonlinear phase ¢n1, modifies
the spectrum of the pulse and typically broadens it. This effect is referred to as Self-Phase
Modulation (SPM). Formally, an instantaneous frequency is introduced

w(t) = a(ﬁNgiz’t) —wo - (2.32)

8With the assumption of instantaneous response, the material is assumed to be lossless and dispersionless and
the power series can be written in time domain in the same form as Eq. (2.29).
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For the example of an ultrashort Gaussian pulse introduced in Eq. (2.9), the time-varying part

of the frequency can be analytically determined:

OonNL (2, t) nowo P 12 ) (2.33)

ot = —81In(2) AL zt exp (—4111(2) Nz

The spectral influence of SPM is shown in Fig. 2.5a for a pulse with At = 900 fs travelling through
L = 1m of silica. In contrast to the effect of dispersion, where the frequency dependency of the
refractive index modifies the pulse in time domain, SPM modifies the pulse in frequency domain.
A quantitative measure of the total accumulated phase due to SPM is the so called B-integral.
It is defined by |23]

L
B:fy/Amax(z,t)|2dz with oy =290 (2.34)
cAeft

0

where « is the nonlinear parameter [16], Aeg the effective mode-field area and L the total length
of the medium. It describes the accumulated nonlinear phase coupled to the temporal evolution
of the pulse within the interaction length in the medium. It is convenient to use the maximum
B-integral as a parameter to characterize the propagation through a medium, which corresponds
to the total accumulated nonlinear phase of the pulse peak, given by P(z)

While SPM describes the influence of nonlinearities for one optical field, the consideration must
be extended if two or more fields are present having different propagation directions, frequencies
or polarization states. These fields interact with each other through nonlinearities and they
can, for example, generate new fields due to the effect of four-wave mixing [16]. Ignoring such
effects, these fields can also interact with each other without any energy transfer, via Cross-Phase
Modulation (XPM). Considering the more general case for the interaction of two co-propagating

fields with different polarization states and different frequencies, the total field is given by
1 . A .
E(r,t) = 5 {[Aix(z, )% + A1y (2, t)§] exp [i(k(w1)z — wit)] +
[Aox (2, )X + Aoy (2,1)§] exp [i(k(w2)z — wat)]} +c.c. . (2.35)

After a lengthy calculation, when plugging Eq. (2.35) in Eq. (2.29), assuming that the medium has
instantaneous response and, since a phase-matching condition is not generally satisfied, neglecting
those terms oscillating at new frequencies generated via four-wave mixing, an additional nonlinear

contribution to the refractive index is obtained, given by [16]
_ 2 2, 2 2, 2 2
Angp = ng | [A1p(2, )" + 2[A2p (2, " + 3 [ Arg (2, O + 3 [ A2q (2, )] (2.36)
_ 2 2, 2 2, 2 2
Angp = na | [Azp(2,0)[" + 2[A1p (5, O + 5 | Awa(5, O + 5 A2 (5O ) (2.37)

with p = z,y and q = x,y such that p # q. As can be seen, the refractive index variation is not
only caused by SPM (the first term in the brackets), but it is also accompanied by the influence
due to the presence of another field, caused by XPM (the last terms in the brackets). The SPM
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Fig. 2.5: Representation of the spectral influence of (a) SPM alone (P, = 8kW)
and (b) XPM and SPM (P, = 10kW), for pulses with At = 900fs
travelling through L = 1m silica (ny = 2.7- 10720 m? W~1).

term is just driven by the same field in the same polarization state. In contrast, the XPM terms
are a mixture of the contributions from the perpendicular polarization component of the same
field and the orthogonal polarization components of the other fields. If both fields are identically
linearly polarized, the impact of XPM is twice as strong as that of SPM. The origin of the factor
of 2/3 lies in the symmetry properties of the x(3) tensor? (weak birefringence). It increases to a
factor of two when using circularly polarized light instead of linearly polarized light. Of course,
Eq. (2.36) and Eq. (2.37) are also valid if both fields oscillate at the same frequency. For the

nonlinear phase it follows

oW 2 2
ONL1p(2 ) = = 2 <\A1p<z,t>2 +2[Azp (2, )" + 5 A2 P + 5 \Azq<z,t>2) (2.38)

oW 2 2
ONL2p(2,1) = 20”z(\Azp<z,t>2+21Alp<z,t>12+3|A1q<z,t>\2+3m2q<z,t>2) - (239)

To obtain the total accumulated nonlinear phase one has to integrate again over the interaction
length, as done in Eq. (2.34), which results in B for SPM and a more complicated expression
for XPM, since the overlap of the pulses must be considered. The accumulated phases ¢nr, 1
and ¢, can be different if [A;(z,t)|*> # |Aa(z,t)]?, but they are predominantly driven by
XPM due to the factor of two in the case of identical linearly polarized fields. As an example,
the additional spectral influence of a second co-propagating and perpendicularly polarized pulse
with equal pulse duration but different peak power is shown in Fig. 2.5b. As can be seen, the
second pulse broadens the already SPM-broadened spectrum of the first pulse even further. For
the case of counter-propagating pulses the interaction time is shorter. This leads to a weaker
total accumulated XPM phase.

Up to now, the transverse extension of the pulse was neglected. But when very high laser
power propagates through a nonlinear medium, the effect of self-focusing sets an upper limit.

Due to the intensity-dependent refractive index, the phase velocity changes across the spatial

9For isotropic media, such as silica, only three elements of the fourth-rank tensor are independent. Those three
elements have approximately the same order of magnitude, since the dominant contributions are of electronic
origin [16].
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intensity profile leading to a focusing effect, which is referred to as the spatial Kerr effect. The
critical power for catastrophic self-focusing, which leads to the destruction of the medium, can
be estimated by [24]

A5

Py=a———
. a47m(w)n2

(2.40)

where « is a material-independent parameter ranging from 1.84 [22]| to 1.9 |24] for a Gaussian
beam shape. As a result, the maximum peak power for silica (and linearly polarized light) is
P., =~ 4MW for a wavelength in the range of 1m (and ns in the range of 2.2- 10720 m2 W—!
[16] to 3.2 - 1072 m2 W1 [22]).
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3 Beam Combining

As mentioned at the beginning, the development of high-power solid-state laser systems with
diffraction-limited beam quality is a challenging task, since limitations are set by nonlinear and
thermal effects, which may cause spatial, temporal and spectral distortions in the Continuous
Wave (CW) or pulsed laser beam. An alternative approach to scale the performance of such
laser systems even further, in spite of these limitations, is to combine the performances of single
laser units operating at power levels below the onset of these detrimental effects. Thereby it is
possible to obtain a superposed output with the properties of each single unit but operating well
above the limit of a single laser. There are plenty of different techniques, which may be classified
into two main classes called Incoherent Beam Combining (IBC) and CBC [8]. Moreover, it is
possible to further subdivide them into implementations, which benefit from separating different
processes, such as the amplification, either spatially, temporally or spectrally. In the following,
different beam combining techniques will be explained in more detail, whereby the focus will be
set, on CBC.

3.1 Incoherent Beam Combining

In the case of IBC such single units are independent laser sources in which the relative phases
are not controlled. Consequently, the individual beams do not interfere but are simply spatially
overlapped. Therefore, this type of combining consists of a simple addition of powers, which is
just viable when using CW lasers or pulsed lasers with pulse durations not shorter than several
nanoseconds, since shorter pulses cannot be efficiently overlapped in time using conventional
electronic delays. With these techniques it is possible to combine several individual lasers spa-
tially or spectrally in a serial or parallel manner.

Conventional one- or two-dimensional diode-laser arrays use IBC. A certain number of laser
diodes are stacked together side-by-side, resulting in an addition of the average output powers
of each emitter. For the case of incoherent superposition the interference term of Eq. (2.21)

vanishes. Thus, in principle, the scaled total output of N lasers can be written as
N
comb r, >\ = Z m ) (31)
m=1

where P, are the average output powers of each single emitter operating at the same wavelength
Am = A. The adjacent output near-field beams are smeared together in the far field, but the total

beam quality is relatively low. Such devices are of interest for pumping multikilowatt solid-state
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Fig. 3.1: Schematic representation of a MOPA architecture using SBC
(after [8]).

lasers such as, for example, rare-earth-doped fiber lasers [8, 25].

On the other hand, these array elements may operate at different wavelengths A,,, which ad-
ditionally scales the spectral width [25]. This principle is known as Spectral Beam Combin-
ing (SBC). Hereby individual beams with non-overlapping spectra are combined with the help
of wavelength-sensitive elements. If the spectra would overlap, the relative phases would need
to be controlled for efficient combination. This, in turn, would be CBC. Wavelength-sensitive
elements are, for example, prisms or diffraction gratings, which deflect the spatially separated
beams according to their wavelength so that they overlap after the wavelength-sensitive element
and subsequently propagate along the same path. Other examples are dichrioc filters or Volume
Bragg Gratings (VBGs), which possess wavelength-dependent transmission and which are able
to combine the beams in a serial manner. These approaches can be applied to various laser
sources, such as the afore mentioned laser diodes [25] or fiber amplifiers [26, 27]. Fig. 3.1 shows
schematically the spectral combination of an array of fiber lasers with a subsequent amplifica-
tion stage in a Master Oscillator Power Amplifier (MOPA) arrangement using two diffraction
gratings.

The advantage of SBC is that the combined beams do not require mutual temporal coherence,
which eliminates complicated methods of phase stabilization and makes the operation at high
power levels more stable. But in order to achieve stable operation and high combining efficiency,
it is necessary to control the spectra of the single emitters which is challanging. If the number
of elements for a certain bandwidth increases, the spectral spacing between the elements will
decrease. This makes the manufacturing of efficient steep-edge filters difficult. Furthermore, in
a serial implementation using filters, the first lager of the array accumulates the largest number
of bounces, which puts tight tolerances on the angular positioning. For parallel implementations
using gratings, the tight positioning tolerances also hold and they additionally need to have
sufficient dispersion, for example angular dispersion, to combine widely-separeted wavelengths.
Moreover, lasers with narrow bandwidths are required, since in the case of broadband lasers the
dispersive elements imprint a spatial chirp, which means that different spectral components in
a beam become spatially dispersed, resulting in a degraded output beam quality. But there are
also proposals to compensate for the chirp with a staircase mirror or a VBG [8, 26, 28|.

This was just a short overview of IBC, but it will not be further considered in this work, since

these implementations are not suitable for ultrashort pulses. In the following, CBC and possible
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implementations thereof will be explained.

3.2 Coherent Beam Combining

In the case of CBC the afore mentioned single laser units are coherent to each other, since the
relative phases are controlled. All units operate at the same wavelength and they are combined
in such a way that they interfere constructively. The fundamental difference with IBC is that
instead of a simple addition of powers each contribution of an unit is added vectorally. This

results in a total output of

Peomp(r,t) =C (3.2)

with P(r,t) = C|E(r,t)|* ~ I(r,t) and C containing all constant factors. Efficiently combining
the outputs in a way that they interfere constructively imposes strong requirements on the control
of the relative phases, the state of polarization and the amplitudes at every instant in time [8|. In
general, CBC can be divided into two subgroups, which are characterized by the kind of output

composition: tiled-aperture and filled-aperture implementations.

3.2.1 Tiled-Aperture and Filled-Aperture Implementation

In tiled-aperture implementations, the outputs of the single laser units are arranged adjacent to
each other forming an array of emitters. Consequently, interference and, therefore, combination
of the individual beams, occurs only in the far field. In principle, this can be thought of as a
synthesized plane wave [8]. Fig. 3.2a shows an example of an one-dimensional fiber amplifier
array. Due to the space between the single emitters, disturbing side lobes emerge in the far field
beam profile. Therefore, the filling factor of the array should be maximized, which means that
the spaces between the tiles should be minimized. To demonstrate this effect, an example of
an one-dimensional laser array emitting Gaussian beams (which are all in phase) is considered.

This can be expressed as

o0 2

Alx,z2=0) = Z d(x — mAx) x Agexp (—Z%)] M <%> , (3.3)
m=—00

where the first term is a series of Dirac delta functions (d) shifted by Az, the second term is a

Gaussian profile with beam radius wg and amplitude Ay which, by virtue of the convolution (x),

is placed at each position designated by the Dirac deltas. The rectangular function M defines a

window with width dz to confine the infinite series of delta functions to a certain dimension (and
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Fig. 3.2: (a) Scheme of the tiled-aperture approach and (b) corresponding spatial
intensity distribution at the emission plane and after a distance z = 1 m.
(c) Representation of the filled-aperture approach and (d) the influence
of interference.

therefore the number of beams). Propagating this by means of the Fresnel diffraction integral

exp <zkz> o
Az, 2) = Mi / A&, 0) exp (;IZ(x - x’)Q) Az’ (3.4)

and using the Fraunhofer approximation, the resulting far field is

- k m ka2 9 ) kx
Az, 2) ~ { Z 4 (Zx — M) exp [— <2z> w0] } * sinc <5:L“Z) . (3.5)
m=—00
This is exemplarily shown in Fig. 3.2b for an array of N = 4 emitters (with an appropriate window
size given by the number of sample points, the beam radii of wy = 10 pm and a separation of
Az = 40 pm) after a propagation distance of z = 1 m. As can be seen, disturbing side lobes are
generated, which grow as the distance between the emitters increases. In the case of optical fibers,
the maximum filling factor for such a two-dimensional arrangement is achieved for a hexagonal
configuration [29]|. In general, the tiled-aperture approach leads to a larger beam size and to a
reduced divergence. An experimental implementation is given in [30].

In the filled-aperture implementations the spatially separated beams are superimposed with a
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beam combiner, which is equivalent to an inverse beam splitter. Consequently, interference
occurs in the near field. Beam combiners are, for example, beam splitters, N x 1 fiber couplers,
gratings, and other diffractive optical elements. As an example, two monochromatic linearly
polarized (one-dimensional) fields, according to Eq. (2.1), are considered, which are combined

with the help of a non-polarizing ideal beam splitter. The superposed field is given by

E(z,t) = % {Eo1 exp [ip(11)] + Eoz exp [ie(12)]} exp [i(k(wo)z — wot)] + c.c. (3.6)

where ¢, are the accumulated phases of the two fields. For identical amplitudes Fy,, = Fg and
phase delays of 7o = 7 and 7, = 0, the expression for interference, given by Eq. (2.21), simplifies
to

I =200 {1+ |y(r)| cos[Ap(r)]} - (3.7)

In the case of fully coherent fields |y(7)| = 1. For constructive interference Ap(7) = 0 and,
therefore, the total intensity is, due to the additional interference term, not only the sum of the
intensities of each field, but four times the intensity I = 4Ij instead. However, when using a
beam splitter as the combining element (50:50 splitting ratio) a factor of 1/2 must be considered
for each beam, which reduces the output by a factor of 2 in Eq. (3.7) and results in I = 21j.
Fig. 3.2c shows in principle the coherent combining process when using ideal beam splitter
cubes as combining elements. If there is constructive interference both inputs will be added at
one output port of the cube. Consequently, at the remaining port (which is called the dark
port) destructive interference occurs. The interference and, hence, the output intensities depend
on the phase delays of the input beams, which is represented in Fig. 3.2d. An experimental
implementation of this scheme can be found in [9]. Generally, the combined on-axis output
intensity scales with N for both tiled- and filled-aperture implementations. It is usual to define
the combining efficiency as the ratio of the combined output power to the total input power.
Considering cascaded beam splitters, the combining efficiency for fields according to Eq. (2.1),

can be expressed as

N 2 N N N ———
<‘ Z \/UmeEm(I' t) > Zl 7(7)"0111: + 1 21 \% rCL) th?zUt ”Ynm’ COS<A¢nm)
oyl ? m= n=1 m=
Tlcomb = N - nm N (38)
> {(|Eonl?) N Y Py
m=1 m=1

with Pt = C <|E0m|2> being the average input powers and PO = 1,,k,, P2 being the output
powers, where 7, are the combiner losses and k., the splitting ratio [31, 32]. For the two inputs
of a beam splitter k1 = k and ko = 1 — k1. As can be seen, the efficiency gets maximized when
|vnm| = 1 and the total phase difference A¢ = 0.
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3.2.2 Approaches to Coherent Beam Combining

There are many different implementations to coherently combine beams both spatially and tem-
porally, which will be briefly explained in the following.

The first one is the common-resonator approach. In this case, the single laser units consist of
an array of gain elements, which are placed inside a single bulk resonator. With the help of the
feedback from the resonator all the elements are coupled together. The difficulty of this approach
is to maintain lowest-order transverse-mode operation, as the power increases. This has been
successfully demonstrated using CO; lasers [8].

Another approach is the evanescent-wave or leaky-wave coupling. For this, the distances between
the single laser units, which are again an array of gain elements, are sufficiently small so that
their evanescent field distributions overlap, which causes a coupling between the elements. A
disadvantage of this method is that phase errors occur between adjacent elements making it chal-
lenging to obtain equal phases at the outputs of the array elements. This poses difficulties when
scaling to large array sizes. This has been applied to fiber lasers, but particularly to phase-locked
laser diode arrays |8, 33, 34].

A third approach is the self-organizing approach, in which the single laser units are oscillators
each having very different path lengths. With the help of the feedback from all the other os-
cillators, every resonator is coupled to all the others. This approach is also called self-injection
seeding. For example, an oscillator without any seed would operate on multiple longitudinal
modes and the power distribution of those modes would fluctuate. Using a seed with a frequency
near a resonance would force the operation of the oscillator on that mode with much higher
power. Through the coupling of, for example, two oscillators an overall resonator is obtained
having an additional resonance condition for the longitudinal modes. Therefore, just the modes
satisfying this condition will be amplified. Because of this it is not possible to create ultrashort
pulses with this approach. Typically, this is implemented with fiber lasers. However, the com-
bining efficiency seems to decrease when scaling to a large number of elements [8, 35].

There are additionally nonlinear optical approaches involving phase conjugation and Raman
beam combining. The method of phase conjugation relies on Stimulated Brillouin Scatter-
ing (SBS), which requires lasers with relatively high peak power. In the case of Raman beam
combining, a certain number of beams are coupled into a fiber, which in sum excite through

Stimulated Raman Scattering (SRS) the Stokes beam. Both concepts appear to be difficult for
scaling to high power levels [8, 36, 37].

A further approach is the use of an enhancement cavity. For this concept an external resonator
is used, which is seeded by a pulsed laser source. In that case, the afore mentioned single units
that should be combined coherently are not beams from spatially separated lasers but successive
pulses from the seed laser. The round-trip time of the resonator and the pulse repetition rate of
the seed laser are matched so that the successive pulses are coherently superposed, which leads
to an enhancement of the circulating pulse inside the resonator. This scales the peak power of
the pulse significantly. There are different techniques to couple out that power; however, this

introduces losses and limits the achievable enhancement. The repetition rate of the out-coupled
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power is limited, since the cavity must be reloaded and the average output power is not scaled.
But this approach is viable for ultrashort pulses [38].

Finally, an active-feedback implementation can be used, by which the differences in the path
lengths of the different laser units are kept identical. These differences are detected and a feed-
back system is used to equalize possible variations of the path lengths with modulo 27. Such
an implementation has been used typically in MOPA architectures. Thereby the output beam
of a seed laser is divided into a certain number of beams, which are distributed on spatially
separated amplifiers. Afterwards those amplified outputs are combined coherently. To obtain
efficient combining, an active stabilization system is needed. There are different possibilities to
actively lock the phases. In general, an error signal is generated, which is fed back to a phase-
controller, for example a delay line. This can be used to lock laser channels pairwise. With
the Hansch-Couillaud method [39] the change in the magnitude of the output amplitude can be
detected as a function of the state of polarization. Another technique is the Pound-Drever-Hall
method [40], by which the output is phase modulated and, with the help of the occurring side
bands, the frequency is stabilized on the resonance frequency of a fixed resonator. Moreover,
a Stochastic Parallel Gradient Descent (SPGD) algorithm can be used to maximize the on-axis
intensity by controlling the phase modulators. This has been applied to both CW and pulsed
operation, with which a successful scaling of the average output power and the pulse energy,
respectively, beyond the afore mentioned limitations may be achieved [41, 42]. Particularly, the
use of fiber-based amplifiers for the amplification of ultrashort pulses [9] is of interest for this
work.

There are also approaches using both SBC and CBC. For this, single-frequency seed lasers are
spectrally combined and afterwards amplified in an all-fiber-based system, to suppress the limi-
ting effect of SBS. Subsequently, this signal is amplified in spatially separated amplifiers and
coherently combined [43].

In the following, the focus is set on a particular active-feedback approach: the polarization beam
combining. It will be considered using ultrashort pulses and fiber-based amplifiers in a MOPA
architecture. Furthermore, a special temporal approach which uses temporal separation of pulses,
the so-called DPA, will be explained.

3.2.3 Polarization Beam Combining

Polarization beam combining [44] is a special approach to the filled-aperture implementation.
In this case, the beam splitters shown in Fig. 3.2c are polarization-dependent. Consequently,
an incident arbitrarily polarized electromagnetic field is divided into its s- and p-polarization
components. As an example, if the incident field is linearly polarized with an angle of 45°, the
amplitude will be split (in an ideal beam splitter) into two parts of equal magnitude, but the
p-component will be transmitted and the s-component will be reflected. The same happens if the
incident field is circularly polarized, apart from the additional phase of one of the components.

To coherently combine several laser units, e.g. fiber amplifiers, a beam splitter must divide
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Fig. 3.3: CBC of two fiber amplifiers with a Mach-Zehnder type interferometer
in a filled-aperture implementation with active-feedback.

one seed signal into several replicas and another (inverse) beam splitter must combine them
again after amplification [45]. Considering two of such channels, a so-called Mach-Zehnder type
interferometer seems to be advantageous. As shown in Fig. 3.3, an input pulse is split into
two orthogonal polarized parts, which are amplified in two separate fiber amplifiers and which
are afterwards recombined. To efficiently recombine ultrashort pulses they do not only need to
overlap in space but also in time. Therefore, an active-feedback system controlling a piezo-driven
delay line is usually employed to match the two optical paths. While the p-polarized component
is transmitted through the first channel, the s-polarized component is reflected into the delay
line. In a double-pass QWP (which behaves as a HWP) the polari