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1 Introduction

Collisions of highly-charged heavy ions with neutral targets at relativistic energies have

been extensively studied during the last decades in both accelerators and storage ring fa-

cilities [1–4], which have provided non-precedent understandings of the atomic structures

and the dynamics of basic interaction processes.

In such collisions, especially when few-electron or even bare projectile ions are utilized,

many possible kinds of basic interactions may occur. Particularly, detailed studies of

the amongst simple and confined ones such as radiative electron capture (REC) [5, 6],

Lyman- [7, 8], Balmer- [9], and intra-shell transitions [10], as well as the Bremsstrahlung

process in inverse kinematics [11, 12] were carried out by the atomic physics division

of the GSI Helmholtzzentrum für Schwerionenforschung. The present master thesis is

dedicated to study the first above-mentioned process: the radiative electron capture of

a bound target electron into a bound state of a fast projectile.

The general form of the capture of an electron by a projectile ion, Pq+ (of atomic

number ZP and charge state q+), from a target atom, T (of atomic number ZT ), can be

schematically described by

Pq+ + T→ P(q−1)+ + T+. (1.1)

In the non-relativistic energy regime, the cross section1 for this (non-radiative) process

falls off asymptotically as v−12 [13] with v being the projectile velocity, due to the

requirement for momentum match.2

However, this stringent momentum condition leading to the rapid decrease can be

loosen by accompanying the capture process with the emission of a photon to carry

1The “cross section” is a measure for the probability of interaction (c.f. subsection 2.1.1).
2The initial momentum has to find, for each of its components, a counterpart in the final momentum

wave function that is displaced by mev (the momentum of an electron traveling with the velocity
of the projectile). With increasing displacement, the overlap of the tails of the two momentum
distributions will rapidly decrease, especially for the collisions between low-Z ions (atoms).
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away the energy and momentum excess:

Pq+ + T→ P(q−1)+ + T+ + ~ωREC. (1.2)

Such a process is hence known as radiative electron capture. In the non-relativistic

regime, REC cross section falls off much slower compared to its non-radiative counter-

part, only as v−5 [13] for high collision velocities (see figure 1.1(a)).

Figure 1.1: (a): Total electron capture cross sections (solid line) for bare uranium ions
colliding with a nitrogen target as a function of ion beam energy. The dashed
line is the contribution of the non-radiative capture and the dotted line shows
that of the REC. (b): Total electron capture cross section for bare uranium
ions with 295 MeV/u of kinetic energy as a function of the atomic number
of the target ZT . Figure reproduced from [5].

In asymptotic relativistic regime, though, cross section of both nonradiative and ra-

diative processes scales inversely proportional to the collision energy, E [1]:

σEC ∝ E−1. (1.3)

For a free electron, capture can not take place at all without the photon emission

to conserve the energy and momentum. Therefore, qualitatively speaking, for those

loosely bound electrons, either in a low-Z target or in the outer shells, REC would be

a preferred, if not the only process for charge exchange in a high energy collision (see

figure 1.1(b)). From this point of view, REC mechanism is already worth attention.
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Moreover, in high energy collisions, a loosely bound target electron may be considered

kinematically free. Thus the REC process may be approximately viewed as the radiative

recombination (RR) of a free electron, which in turn, is the time-reverse of the atomic

photoelectric effect, one of the most basic form of light matter interaction. Consequently,

the measurements of the REC of heavy ions offer a unique opportunity to study strong

field effects of the photoionization, especially when the properties of interest are not

directly accessible in an ionization experiment [6].

Even more, the electron capture (and other charge exchange) processes are inevitable

in almost each step of any kind of experiment concerning highly-charged ions: from the

production of ions to the transportation and storage. In order to study other atomic

reactions, one usually needs to subtract this omnibackground to deduce the effects of

interest.

All in all, the well-refined REC process deserves peculiar attention. However, because

of the lack of efficient polarimetric techniques,3 the spectroscopic studies of REC were

mainly restricted to the determination of angular distributions and the absolute cross

section [6] without resolving the polarization of the emitted photons, until the recent

development of segmented hard X-ray detectors enabled precise and efficient Compton

polarimetry measurements [14–16].

A study in this direction started in 2006, when the degree of linear polarization of REC

into the K-shell of bare ions was measured for the first time using a 4× 4 pixel germa-

nium detector [17]. Certain depolarization effects were observed, which was theoretically

predicted by Fritz Sauter more than half a century ago [18].

Later detectors with a much finer segmentation (more than 1000 pseudo-pixels) have

become available, resulting in a precise determination of the Lyman-α1 polarization

in hydrogen-like uranium [19] and the observation of spin-transfer effects in polarized-

electron Bremsstrahlung [20]. There was also a series of measurements aiming for a

more precise polarization study of the REC process [21–23], however only a preliminary

analysis of the obtained data was performed at that time.

Above listed perspectives and shortcomings motivate the present work. By optimizing

and extending the analysis routines originally developed by G. Weber [24], the aim of

this work is to form a reliable basis of analyzing algorithms of estimating the linear

polarization properties from the data obtained with segmented X-ray detectors, which,

as will become clear in the course of this report, is a demanding task.

3For typical projectile energies of the order of 100 MeV/u and capture into high-Z ions, the emitted
REC photons have typical energies of the order of 100 keV, for which suitable polarimetric techniques
are usually based on Compton scattering (see chapter 2 and references therein for more information).
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Figure 1.2: Polarization of the uranium K-REC radiation as a function of the photon
emission angle in the projectile frame of reference, compared with predic-
tions of a fully relativistic theory. Three collision energies are given: 98
MeV/u, open symbol (for experimental data) and dashed line (for theory);
400 MeV/u, the solid symbols and the full line; 800 MeV/u,dash-dotted line.
Figure reproduced from [17].

The thesis is structured as follows: in chapter two, basic notations required for further

discussions and an overview of relevant physics processes will be given; chapter three

serves to describe the REC process from the theoretical point of view, followed by a pre-

sentation of the experimental equipment and techniques in chapter four; in chapter five,

the results of this study will be demonstrated; chapter six is devoted to additional exper-

imental studies on radiation yields at high-power lasers that are not directly connected

to the REC process, and finally in chapter seven, some conclusion remarks together with

outlooks will given.
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2 Physics Background

The study of radiative electron capture (REC) is a rather miscellaneous subject, which

involves the coupling of the matter and light in a quantum mechanical as well as relativis-

tic way. In this chapter, some basic concepts including basic notations, conventions and

the most relevant interaction processes will be briefly reviewed, such that the minimum

required knowledge for understanding the following text is covered.

2.1 Basic Concepts

2.1.1 Cross Section

When a beam of particles impinges on a target, some may pass through without any

interaction, others may change their directions and energies, and others may even disap-

pear due to interacting with the target (see figure 2.1). The measure for the probability

of these interactions to occur is generally given as the cross section, denoted by σ.

Figure 2.1: Illustration of the cross section as a measure for the likelihood of a certain
reaction in case of a scattering process. Each scattering center (red) is asso-
ciated with a certain geometrical area.
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2.1. Basic Concepts

Formally, the differential cross section is defined as the ratio of the number of particles

scattered1 into unit solid angle dΩ in unit time, Ns, divided by the incident particle flux

F :
dσ

dΩ
=
Ns

F
. (2.1)

For a single quantum mechanical particle, this ratio may be reformulated in terms of

the probability current [25]:
dσ

dΩ
= |f(θ, ϕ)|2 , (2.2)

where f(θ, ϕ) is the quantum amplitude associated with the interaction, e.g. scattering.

Judging from the dimension of the particle flux, [L−2], or equivalently, from the di-

mension of the quantum amplitude, [L], the cross section has the dimension of area,

which can be heuristically understood as the geometrical cross-sectional area of the tar-

get intersecting the beam. However, this picture should not be taken as real measure

of physical dimension of the target. For historical reasons, the unit of cross section is

usually given in barn (symbol b), with 1 b = 10−24 cm2.

The differential cross section is usually a function of energy of the incoming particle

and the angle into which the particle is scattered. The integration of the differential

cross section over the full solid angle gives the total cross section for a process at given

energy E:

σ(E) =

∫
dσ(E,Ω)

dΩ
dΩ. (2.3)

For many practical applications, e.g. shielding of high-energy radiation, it is sufficient

to know the total cross section of a certain interaction process. However, for some usages

such as tracking the propagation of radiation through matter, differential cross sections

are necessary because the direction into which outgoing particles are emitted after an

interaction (and sometimes also the polarization properties of these particles) might be

of relevance. Furthermore, the relative angular distributions, which are sometimes even

easier to measure than total cross sections, lend more insight into detailed dynamics of

the reactions than the absolute total cross sections.

In the ion-atom collision experiments concerned in this work, the typical energy of the

projectile is usually relativistic, therefore it is beneficial to be familiar with the notions

of special relativity. The following two subsections will be devoted for this purpose.

1Here “scattering” refers to interactions of any kind that leads to the outgoing particle emitted into
the direction of interest.
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2.1. Basic Concepts

2.1.2 Four-vector

Human intuition tells that we are living in a three dimensional space where a scalar-

like time constantly flows. However, since the discovery of special theory of relativity,

space and time are regarded not severely different any more. Instead, one can treat

space and time on a same footing and say that we are living in a “3+1” dimensional

spacetime, which mathematicians are used to call Minkowski space. To represent a point

in Mikowski space, a vector of four components is necessary, hence such kind of vectors

are called four-vectors (or 4-vectors).

A four-vector, x, for spacetime coordinates can be defined in a contravariant manner as

xµ, µ = 0, 1, 2, 3 with an upper index, where x0 = ct, represents the time-like component

with t being the time and c the vacuum speed of light; xi, i = 1, 2, 3 are the three space-

like coordinates. Here the standard convention states that Greek indices take values

for all time and space components whereas Latin indices take values only for spatial

components. By multiplying the Minkowski metric tensor ηµν = diag(1,−1,−1,−1),

the upper indices can be lowered to give the covariant vector

xµ = ηµνx
ν = (ct,−x), (2.4)

here repeated indices are summed over, following Einstein summation convention.

The inner product (or Minkowski scalar product as analogy to normal vector scalar

product) of two spacetime 4-vectors is defined as

ηµνx
µxν = xµxµ = xµx

µ = ηµνxµxν = (ct)2 − |x|2 . (2.5)

Other dynamical 4-vectors are defined in a similar way as the definition of coordinates,

e.g. for energy-momentum 4-vector pµ = (E/c,p), the inner product reads

pµpµ = (E/c)2 − |p|2 . (2.6)

With the help of the 4-vector notations, the Lorentz transformation can be formulated

in a clean form, as will be shortly discussed in the next subsection.

2.1.3 Lorentz Transformation

One basic hypothesis of special relativity is that physics law should be invariant under a

Lorentz transformation, which, per definition, is a linear transformation, Λ, linking two

7



2.1. Basic Concepts

spacetime coordinates

x′µ = Λµ
νx

ν , (2.7)

such that the Minkowski scalar product is preserved:

x′µx′µ = xνxν . (2.8)

The general form of the Lorentz transformation will not be explored further, instead,

the discussion will be limited to the transformations in standard configurations for clarity

and simplicity. A standard configuration has the following meaning:

Consider two inertial frames with Cartesian spacetime coordinates, (ct, x, y, z) and

(ct′, x′, y′, z′), respectively, with the origins of both coordinate systems, O and O′, co-

incident. Assume that the x-axis and the x′-axis are collinear, while the y(z)-axis is

parallel to the y′(z′)-axis. Assume further that the primed system has relative to the

unprimed one a velocity v along the coincident x(x′)-axis.

Given the reduced velocity β = v/c and Lorentz factor γ = (1− β2)−1/2, the explicit

form of Lorentz transformation for spacetime coordinates then reads
ct′

x′

y′

z′

 =


γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1



ct

x

y

z

 . (2.9)

Other dynamical 4-vectors, transform the same way as the coordinates,

Z ′µ = Λµ
νZ

ν . (2.10)

When considering a radiative process, the transformation formulae of relevant quantities

such as photon energy, angle and element of solid angle can be given as:

photon energy ~ω′ = ~ωγ(1− β cos θ) (2.11)

angle cos θ′ =
β − cos θ

1− β cos θ
(2.12)

element of solid angle dΩ′ =
dΩ

γ2(1− β cos θ)2
, (2.13)

where ~ is the reduced Planck constant and ω denotes the angular frequency of the

photon.
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2.1. Basic Concepts

2.1.4 Polarization of Photons

A photon, or “light quantum” as it was firstly proposed, is a gauge boson of electro-

magnetic interaction in the standard model of particle physics. The concept of photon

arises from the quantization of the electromagnetic (EM) field. The quantized EM fields

should be understood as operator-valued distributions over space and time:

Â(r, t) = (φ̂(r, t), Â(r, t)), (2.14)

where φ̂(r, t) represents the scalar potential and Â(r, t) the vector potential.

Due to the gauge symmetry2 and transverse nature of the EM field, these four apparent

degrees of freedom of Â(r, t) represent only two physical degrees of freedom. Taking

into account the intrinsic angular momentum (spin) of ~ possessed by a photon, it is

convenient to ascribe these two degrees of freedom to the helicity (projection of spin

onto the propagation direction) of the photon and express the polarization state of a

photon as

|ψ〉 = a1 |+1〉+ a2 |−1〉 , (2.15)

where basis states |+1〉 and |−1〉 can be created by the unit vectors of the right- and

left-handed (circular) polarization

û+1 =
−1√

2
(ûx + iûy)

û−1 =
1√
2

(ûx − iûy),
(2.16)

respectively, with the z-direction of the Cartesian coordinate being the propagation

direction. Specifically, to create a linearly polarized photon, the unit polarization vector

can be parameterized as

û(φ) =
1√
2

(e−iφû+1 + eiφû−1), (2.17)

where φ specifies the orientation of the polarization with respect to the above given

coordinate system.

A beam of photons, on the other hand, can be described by a state vector as above

only if all the photons in the beam are in the same polarization state, which is usually not

2The gauge symmetry prohibits rest mass of the field, therefore a photon should move with a speed
of “c” in the empty space and there is no rest frame of a photon.
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2.1. Basic Concepts

the case. Therefore a compact expression of the polarization properties of the statistical

ensemble of photons should be given by a density operator ρ̂γ, which, when expressed in

the helicity representation, gives a two-by-two matrix with three (real) parameters [26]

〈kλ| ρ̂γ |kλ′〉 =
1

2

[
1 + P3 −P1 + iP2

−P1 − iP2 1− P3

]
. (2.18)

The P ’s in the matrix are the Stokes parameters with

P1 =
I0◦ − I90◦

I
(2.19)

P2 =
I45◦ − I135◦

I
(2.20)

describing the degrees of linear polarization with respect to the x-y axes and the diagonal

directions, respectively, and

P3 =
I+ − I−

I
(2.21)

describing the degree of circular polarization. Here I stands for the total intensity of

the photon beam whereas the I’s with subindices represent the intensities that could be

transmitted by the corresponding ideal polarization filters.

For experimental studies it is more convenient to combine P1 and P2 to represent the

total degree of linear polarization of a photon beam in terms of

PL =
√
P 2

1 + P 2
2 . (2.22)

The polarization of the beam can also be illustrated by an ellipse as shown in figure 2.2

with the relative length of the principle axes, parameterized by χ, and the orientation

of the linear polarization with respect to the given x-y coordinate system, φ, defined in

terms of the Stokes parameters by the two ratios

tan 2χ =
P3

PL
and tan 2φ =

P2

P1

. (2.23)

There exist two limiting cases for a polarization ellipse: the completely circularly polar-

ized beam (PL = 0, |P3| = 1), which will be illustrated by a circle; and the fully linearly

polarized one (PL = 1, P3 = 0), which will be a line. Any intermediate case will give a

true ellipse and is therefore also referred to as elliptically polarized light.

To measure the poalrization of photons with different energies, there are several po-

10



2.2. Hard X-ray Interacting with Matter

Figure 2.2: The polarization properties of light can be illustrated by the polarization
ellipse. The two angles χ and φ are defined in equation (2.23).

larimetric techniques [27–34], among which the one based on Compton scattering [32–34]

(see subsection 2.2.2) is employed in this work, as will be discussed in detail later in the

section 2.3.

2.2 Hard X-ray Interacting with Matter

To measure and understand the properties of the REC photons, which is typically in the

hard X-ray regime of the electromagnetic spectrum, it is necessary to have a basic idea

of what kinds of interactions and how likely each of them may take place. This is helpful

for analyzing the experimental scenario as well as the facts recorded by the detectors.

Photon interacting with matter has a peculiar feature: when passing through matter,

the intensity of a photon beam is only attenuated by the elimination of photons from

the beam, whereas the energy of each individual photon does not degrade. This is due

to the fact that each time a photon interacts, either through absorption or scattering, it

will be removed from the beam entirely.

2.2.1 Photon Absorption

When an atom absorbs completely the energy of a photon and one of its bound electrons

gets ejected, this absorption process is described as the photoelectric effect. The vacancy

generated will then be filled by subsequent Auger processes and/or atomic transitions

that give rise to fluorescence radiation. Dictated by energy conservation, the ejected

11



2.2. Hard X-ray Interacting with Matter

photoelectron will have a kinetic energy of

Te = ~ω + V,

where ~ is the reduced Planck constant; ω denotes the angular frequency of the absorbed

photon and V represents the (negative-valued) binding energy of the electron. Worth

mentioning is that photoelectric effect can only take place with the presence of the nu-

cleus, since without a third party carrying away the recoil momentum, an originally free

electron is not able to absorb the photon energy without breaking the law of momentum

conservation.

Theoretically, rigorous treatment of the photoelectric effect is difficult because of the

complexity of the wavefuctions for the atomic electrons. Hence many approximate ap-

proaches have been proposed, which will be discussed in detail in the next chapter.

Figure 2.3 plots the experimentally measured photoelectric cross section against the

photon energy for Xe [35]. For photon energies above the K-shell (about 35 keV),

it is primarily only the K-electrons involved in the ionization process. This can be

qualitatively understood since compared with the outer shells, the wavefucntion of K-

electrons have the most overlap with the nucleus wavefunction, which is beneficial for

momentum transfer. Resonance effects can be clearly seen when the photon energy drops

to near the binding energy of K-shell electrons, whereas with only a bit further reduction

of photon energy, the cross sections plummet since the energy is not sufficient to ionize

K-electrons anymore. This point is hence known as the K-edge of the photoionization.

Similar behaviour also occur at the L-, M- and other edges.

Figure 2.3: Total photoionization cross section for xenon as a function of incident photon
energy.[35]

12



2.2. Hard X-ray Interacting with Matter

When the photon energy is off-resonance, the cross section of ionization scales roughly

according to the following relation [36]:

σ ∝ Znω−7/2, (2.24)

with the exponent n of the atomic number Z varying between 4 and 5 depending on the

photon angular frequency ω. There are two consequences of this relation that should be

kept in mind: the lower energy a photon has, the more probable it will get absorbed; and

high-Z material absorbs photon more effectively. This lends us the instructions when

choosing the most efficient detector material for certain photon energy ranges.

Take one of the most common detector material, silicon, as an example, the photon

absorption will be the dominate process up to an energy of 50 keV, as can be seen from

the figure 2.4 [37]. Above this energy the Compton scattering dominates the interaction,

where only a part of the photon energy is detected in an event, as will be shown in the

next subsection.

Figure 2.4: Photon interaction cross sections in silicon for the most relevant processes in
the hard X-ray regime [37].
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2.2. Hard X-ray Interacting with Matter

2.2.2 Photon Scattering

As the carrier of electromagnetic force, a photon can be scattered by electromagnetic

potentials. When the energy of photon does not change before and after the scattering,

this process is called elastic, e.g. Rayleigh scattering, where a photon is coherently

scattered on the bound electrons of an atom. On the contrary, when the photon energy

changes during the scattering, the process is called inelastic, e.g. Compton scattering,

where a photon is scattered on a single free electron. In the following discussion, the

focus will be put on Compton scattering since it has the most relevance to the scope of

this work for two reasons: the energy deposition in the detector and the sensitivity to

the incident photon polarization.

Compton Scattering

First observed by Arthur Holly Compton in 1923 [38], Compton scattering gave a con-

vincing verification of the quantum theory of light. Given the electron at rest before

scattering, by adopting energy and momentum conservation, one can derive the kine-

matics of the Compton process (see figure 2.5) as the equation below:

~ω′ =
~ω

1 + ξ(1− cos θ)
, (2.25)

where ~ω and ~ω′ are the energies of the incident and the scattered photons, respectively,

θ denotes the scattering angle; ξ = ~ω/mec
2 can be understood as reduced photon energy

in the unit of electron rest mass energy.

Figure 2.5: Illustration of the process of Compton scattering. A photon scatters on a
free electron at rest and transfers a certain amount of energy to the electron.

The kinematics equation (2.25) yields a one-to-one correspondence between scattered

photon energy and the scattering angle, which offers the possibility of schematic event

selection in the Compton analysis, as will be discussed in the subsection 5.2.2.
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2.2. Hard X-ray Interacting with Matter

The recoil electron gains the kinetic energy given by

∆E = ~ω − ~ω′ = ~ω
ξ(1− cos θ)

1 + ξ(1− cos θ)
. (2.26)

Apparently, the expression above has a maximum when θ = π, corresponding to the

completely backward scattering of the incident photon. Note that for relative low pho-

ton energies (ξ < 1/2), the energy of scattered photon is larger than the recoil electron

regardless of the scatter angle which may become very beneficial for the Compton analy-

sis discussed in the future chapters, where both the scattering event and the subsequent

photoionization event should be identified unambiguously. Whereas for higher incident

photon energies (ξ > 1/2) this holds true only for the forward directions (relatively small

θ), as can be seen in figure 2.6.

Figure 2.6: Angular dependence of the scattered photon energy and recoil electron energy
in unit of the incident photon energy. For ξ < 0.5 the scattered photon energy
is more than the recoil energy of electron, where as for values of ξ > 0.5 a
crossing is observed.

The electrons in the matter are, of course, in most cases bound to the nuclei. However,

as long as the energy of photon in question is so high that the binding energy of the

electrons are negligibly small, one can safely describe the scatter of a photon on such

electrons using Compton scattering formulae (c.f. section 3.1).
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2.3. Compton Polarimetry

Klein-Nishina Formula

The differential cross section of Compton scattering can be given by quantum electro-

dynamical calculations as [39]

dσ

dΩ
=
r2
eη

2

2

(
η + η−1 − 2 sin2 θ cos2 ϕ

)
, (2.27)

where re = αλe is the classical electron radius with λe being the reduced electron Comp-

ton wavelength and α fine structure constant; η = (1 + ξ(1 − cos θ))−1 is the ratio of

photon energy after and before the scattering; ϕ is the azimuthal scattering angle, de-

fined as the the angle between plane of the incident photon’s linear polarization and the

plane of Compton scattering (c.f. figure 2.7). This formula was first derived in 1928 by

Oskar Klein and Yoshio Nishina, hence known as Klein-Nishina formula.

Figure 2.7: Definition of polar scattering angle θ and azimuth angle ϕ in Compton scat-
tering.

The observation that the differential cross section depends not only on the polar angle

but also on the azimuth angle could lend the insight that the Compton scattering process

can be employed to study the polarization of the incident photon beam. This subject is

known as Compton polarimetry, which will be the topic of next section.

2.3 Compton Polarimetry

The differential cross section described by the Klein-Nishina formula (2.27) indicates that

Compton scattering is sensitive to the linear polarization of the incident photon. More

specifically, the photon is more likely to be scattered into the direction perpendicular to

its polarization than into the parallel one (see figure 2.8). Therefore a linearly polarized

photon beam results in an azimuthal modulation of the scattered intensity, which can
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2.3. Compton Polarimetry

be quantified by a modulation fraction defined as

M(ϕ) =
I(ϕ0 + 90◦)− I(ϕ0)

I(ϕ0 + 90◦) + I(ϕ0)
, (2.28)

where I(ϕ) represent the intensity that could be measured after an ideal linear polar-

ization filter oriented at angle ϕ with respect to the reaction plane. To achieve the

maximal modulation fraction, ϕ0 should be chosen along the polarization direction of

the incident photon beam. It should be noted that the Compton process itself does not

act like a polarization filter on a single-photon level, only the statistical nature of the

process allows the observation of the modulation of the scattered intensity.

As shown in the figure 2.8(a), the modulation fraction has higher values for lower

energies. For instance, in the case of photon energy below 200 keV the maximum

modulation fraction exceeds 90% , and occurs near 90◦ of the polar scattering angle θ.

With increase in energy the peak of the curve shifts slightly to forward angles, which

can be taken as an instruction when designing the detector geometry. The modulation

fraction drops to zero for small scattering angles and in the case of back scattering. Thus

the most useful events are only those scattered into the limited range of angles around

θ ≈ 90◦.

Figure 2.8: (a) Modulation fraction as function of the polar scattering angle θ for various
incident photon energies; (b) the corresponding azimuthal distribution at
θ = 90◦, with ϕ = 0 being the polarization direction.

A simple Compton polarimeter consists of a scatterer, and one or more absorbers,

situated at θ ≈ 90◦ with respect to the scatterer (see figure 2.9). Thus the intensities

observed by the absorber(s) at different azimuth angles reflect the polarization properties
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2.3. Compton Polarimetry

Figure 2.9: A simple Compton polarimeter setup. One detector crystal serves as the scat-
terer and the other as absorber(s). The azimuthal distribution of the scat-
tered intensity measured by the absorber(s) reflects the polarization property
of the incident radiation.

of the incident radiation.

In a real experiment, however, the differential cross section of Compton scattering,

dσ/dΩ, has to be taken into account as well. To be precise, the parameter to be con-

sidered is M
√

dσ/dΩ because of the square root scaling of statistical uncertainty with

respect to the cross section. In order to optimize the polarimeter for this parameter,

the absorber(s) should be shifted slightly to the forward direction (see figure 2.10). For

practical reasons, though, most currently available Compton polarimeters have their

absorber detectors at θ ≈ 90◦ with respect to the incident X-rays, which, for photon

energies below 1 MeV, is also quite near the optimum position.

Figure 2.10: Optimization parameter M
√

dσ/dΩ as a function of the polar angle θ.
Optimal absorber position shifts forwards for high photon energies.
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2.3. Compton Polarimetry

Furthermore, because the information about the initial photon polarization will be

generally very hard to retrieve after a second scattering, the detector system should be

optimized to detect single Compton events, namely, the absorption of the scattered pho-

tons should be more likely than a second scattering. A more comprehensive discussion

of Compton polarimetry can be found in reference [33].

Since the introduction of highly segmented hard X-ray detectors, the scatterer and

absorber of the above mentioned simple Compton polarimeter can actually be a single

detector crystal [15, 16]. Such a detector [16] will be introduced in section 4.2.1. Before

that the theoretical description of the REC process will be presented in the next chapter.
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3 Theoretical Description of REC

Radiative electron capture (REC) is the process where a fast projectile ion captures a

bound electron from a target atom with the simultaneous emission of a photon. In a

collision of a relativistic highly charged high-Z projectile ion with a low-Z target atom,

the REC into a tightly bond state of the projectile, e.g. into K-shell, is almost identical

to the time-reverse of the photoionization: the radiative recombination (RR) of a free

electron (see figure 3.1)

Figure 3.1: Schematic description of the radiative electron capture (REC) as the time-
reverse of the photonionization, i.e. radiative recombination (RR).
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3.1. Impulse Approximation

The theoretical description of the REC process has been formulated in a direct manner

using strong-potential Born calculation by Hino and Watanabi [40], where distorted-

wave methods was applied to evaluate the transition amplitude. However, this method

suffers from spurious contributions when the approximate wavefunctions fail to obey the

selection rules followed by REC [41].

Alternatively, there is the method based on impulse approximation (IA), where REC

is viewed as modified RR process: The low-Z target is considered as merely providing a

momentum distribution and a binding energy to the otherwise free electrons.

In this chapter the IA-based approach [13] will be reviewed for the REC into an

initially bare projectile ion, which is also the experimental scenario concerned in this

work. With this restriction of the charge state of the projectile, the correlation and

shielding effect present in many-electron ions do not come into further discussion.

As a preparation for a fully relativistic description, the conventions adopted are listed

below: the two frames of references one naturally encounters in the description of REC,

namely, the laboratory frame where the experiments are performed and the moving frame

in which the projectile is initially at rest (will be called projectile frame or emitter frame

hereafter) where the theories are most conveniently formulated, will be distinguished

by a prime attached to each quantity measured in the projectile frame (c.f. subsection

2.1.3). The z-direction of polar coordinate system is chosen as the moving direction

of the projectile ion in the laboratory frame, or equivalently, the opposite direction

of electron movement when referring to projectile frame. Furthermore, natural units

~ = me = c = 1 are used for the tidiness of equations unless explicitly stated otherwise.

3.1 Impulse Approximation

In adopting the impulse approximation (IA), the target is regarded as a collection of

independent quasi-free electrons with a momentum distribution determined by the bound

electron orbitals of the target. The Coulomb potential of the low-Z target atom will be

considered having no further influence on the plane waves representing these quasi-free

electrons. Therefore a well-defined asymptotic 4-momentum q = (ωi, qz,q⊥)T can be

associated with each target electron having an energy of ωi, a longitudinal momentum

of qz, and a transverse momentum of q⊥.

Then the capture process of this electron can be visualized in the emitter frame as

a free electrons moving towards the projectile ion with 4-momentum q′ = Λq, where Λ
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3.1. Impulse Approximation

stands for Lorentz transformation, or explicitly

q′ =

 ω′i

q′z

q′⊥

 =

 γ(ωi − vqz)
γ(qz − vωi)

q⊥

 , (3.1)

where γ = (1− v2)−1/2 is the Lorentz factor and v stands for the projectile velocity.

For a high energy collision between a heavy bare ion and a low-Z target atom, the

velocity of the captured electron in the projectile frame, v′e, is essentially determined by

the velocity of the target atom with respect to the projectile, −v. However, the electron

bound to the target has a momentum distribution ρ(q), so that there is a momentum

spread around the central momentum q′c = −γv.

By assuming qz � γv, the doubly differential (in photon energy ω′ and solid angle

Ω′) REC cross section can be given by the convolution of the RR cross section and the

target electron momentum distribution:

d2σREC

dω′dΩ′

∣∣∣∣
ω′=ω′p

=

∫
d3q

dσRR(q′)

dΩ′
ρ(q) δ(ω′p + ω′f − ω′i), (3.2)

where ω′p is the energy of the photon to be emitted and ω′f is the electron energy in the

final atomic state. Hence the delta distribution represents the constraint for the energy

conservation. It should be noted that the dependence of the RR cross section on the

projectile atomic number ZP and the final state are omitted for brevity.

The above mentioned target momentum distribution can be obtained as the absolute

square of the initial electronic wavefuctions in the momentum representation:

ρ(q) = |ϕ̃i(q)|2 . (3.3)

In practice, ϕ̃i(q) can be calculated as the Fourier transform of, for example, the

Roothaan-Hartree-Fock (RHF) wavefuctions [42].

A qualitative understanding can already be given by a simplified case, i.e. the spheri-

cally averaged distribution for a nonrelativistic hydrogen-like system [1]

ρ(q) =
1

n2

∑
lm

|ϕ̃nlm(q)|2

=
8Q5

n

π2(|q|2 +Q2
n)4

, (3.4)
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3.1. Impulse Approximation

where ϕ̃nlm(q) is the Fourier transform of the electron wave function for the state char-

acterized by the nonrelativistic quantum numbers {n, l, m} and

Qn =
αZT
n

, (3.5)

with α being the fine structure constant, ZT being the target atomic number, and n the

primary quantum number of the target electron in question.

The momentum distribution (3.4) has a maximum at |q| = 0 and a width determined

by Qn: the distribution gets more concentrate with decreasing of ZT and increasing of

n (c.f. figure 3.2). This quite general feature leads to a simplification of the convolution

formula (3.2) when the slow variation of the RR cross section is taken into account.

By taking the slow varying RR cross section out of the integral, substituting for the

momentum distribution the expression (3.3), and inserting expression (3.1) for initial

state energy, one can obtain:

d2σREC

dω′dΩ′

∣∣∣∣
ω′=ω′p

=
dσRR(q′)

dΩ′

∫
d2q⊥

∫
dqz |ϕ̃i(q)|2 δ(ω′p + ω′f − γωi + γvqz)

=
1

γv

dσRR(q′z)

dΩ′
J (qz),

(3.6)

where

J (qz) =

∫
d2q⊥ |ϕ̃i(q)|2 (3.7)

is the so-called Compton profile of the target atom, which can be found as tabulated val-

ues [43]. The longitudinal component of momentum, qz, is determined by the integration

of the delta distribution as:

qz = −
ω′p + ω′f − γωi

γv
, (3.8)

whereas its Lorentz transformed counterpart, q′z, is given by equation (3.1).

So far the effects of the transverse momentum q⊥, which results in a tilt of the total

momentum off the z-axis, have not been considered. This tilt introduces an individual

symmetry axis of photon angular distribution for each value of the transverse momentum,

therefore, these small deviations have to be integrated over. However, the estimate of the

tilt angle [13], Q1/γv, amounts only about 0.7◦ with respect to the z-axis for the rather

moderate experimental condition considered in this work (150.5 MeV/u Xe54+ colliding

with hydrogen), for higher energies the tilt angle and hence its influence will be even
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3.1. Impulse Approximation

less. Consequently, it is appropriate [5] to neglect the transverse electron momentum in

the IA for practical reasons.

Therefore the expression (3.6) represents the final form of the IA, which is implemented

in the code of the REC calculator developed within the framework of this master thesis

(see section 5.1). Some spectra produced by this calculator are shown in figure 3.2,

where the shape of REC spectra can be described as the Doppler broadened (due to

the target Compton profile) RR spectra with the Doppler width characterized by Qn as

defined in equation (3.5). The peaks are around qz = 0, or equivalently ω′c = γωi − ω′f
with a tendency to shift towards the lower energy direction due to the decreasing RR

cross sections for higher energies (c.f. subsection 3.2.3).

Figure 3.2: REC cross section into K- and L-shell of bare Xe for a H, N, and Ar tar-
get at collision energy of 150.5 MeV/u, observed at 90◦ in the laboratory
frame, calculated with the REC calculator developed within this work. The
maximum intensity is normalized to 1 for each target species.

At this point, the validity of the above mentioned IA is a critical question to address.

Because all the following discussions are based on a valid IA, the next subsection will

be devoted to justify this approximation.
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3.1. Impulse Approximation

3.1.1 Validity of Impulse Approximation

Qualitatively, the IA is expected valid when the energy transferred to the electron in

the capture process is much larger than the binding energy of the initial states involved,

which seems justified by the experimental conditions: capture into inner shells of a

relativistic high-Z projectile from a low-Z target.

To formulate a quantitative criterion for validity, however, the close analogy of REC to

Compton scattering from bound electrons can be used, because the IA was successfully

applied there to describe the photon scattering (see [44] for more information). In the

IA described in [44] a high-energy photon is scattered inelastically by an initially bound

electron, leading to the ejection of the recoil electron which is then described by a plane

wave. This description has a clear relation to the REC with the projectile ion replacing

the photon and the initial electron described by a plane wave.

Due to this close analogy, the criterion for REC [5] can be formulated similarly as

equation (5) of reference [44]:

ρREC =
αZT
nv
� 1. (3.9)

Using the nonrelativistic relation between projectile energy TP and its velocity v, the

criterion can be expressed in simple term of the experimental parameter TP as

ρREC ≈ 0.16
ZT
n

(TP [MeV/u])−1/2 � 1, (3.10)

which should be satisfied even better for relativistic conditions.

For the experimental condition of this work: ZT = 1, n = 1, and TP = 150.5 MeV/u,

the criterion is well satisfied with ρREC = 0.013� 1.

Quite generally, because all target electrons will contribute to REC, one has to average

over them for a multi-electron target. In that case the large number of slow valence

electrons will dominate the few fast inner-shell electrons. In short, the criterion should

be well satisfied by realistic experimental conditions.

It should be noted that the quantitative criterion discussed above does not refer to

the relation between atomic numbers of the collision system, however, in order to justify

the assumption that the target electrons are subject exclusively to the Coulomb field of

the projectile1, the requirement ZT � ZP must be fulfilled.

1As a consequence, the initial state can be described by a plane wave and the final state by a bound
state of the projectile.
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3.2. Radiative Recombination I: Approximate Methods

With the IA at hand, the remaining problem is to calculate the properties of RR, which

will be the topic of the following two sections, including the approximate approaches in

section 3.2, and finally a rigorous method based on density matrix theory to calculate

RR cross sections as well as polarization properties in section 3.3.

3.2 Radiative Recombination I: Approximate Methods

As already pointed out, RR is the time-reverse of the photoelectric effect. Therefore the

cross section of RR can be obtained from the cross sections of the photoelectric effect

by adopting the principle of detailed balance [5, 45]

d2σRR

dω′Ω′
=
ω′2

q′2
d2σph

dω′dΩ′
. (3.11)

For this reason, this section will primarily discuss the photoelectric effect, particularly

the approximate treatments. The obtained cross sections will then be converted to RR

cross sections using detailed balance.

It will be shown that the angular differential cross sections of RR are dominated by

large cancellation effects between retardation and relativistic transformation hence show

up in a particular clean manner in the laboratory frame.

3.2.1 Photoelectric Effect

The differential cross section of for a photon with wave vector k ( |k| = ω/c with c

being the speed of light and ω the angular frequency of the photon) to liberate a bound

electron into a continuum state can be given in general as [46]

dσph

dΩ
∝ |Mfi|2 . (3.12)

Here the “prime” convention will be temporarily omitted because all quantities are given

in emitter frame. The transition matrix element Mfi = 〈ψf | R̂ |ψi〉 can be evaluated in

the coordinate representation, 〈r|, as

Mfi =

∫
d3r ψ†f (r)α · û eik·rψi(r), (3.13)

where α is the vector form of Dirac matrices; the unit vector û denotes the polarization

of the incident photon; ψ†f (r) represents the Hermitian adjoint of the final state spinor
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3.2. Radiative Recombination I: Approximate Methods

and ψi(r) the initial state spinor; the plane wave part eik·r represents the inclusion of all

multipole orders, or so called retardation effect.

3.2.2 Born Approximation

The simplest case to consider is the ionization of a nonrelativistic K-shell electron. Given

the incident photon has much more energy than needed to liberate the K-shell electron,

the final state electron with momentum q can be described by a plane wave

ψf (r) = eiq·r. (3.14)

The Dirac matrices α then reduce to a nonrelativistic current operator p̂ = −i∇ [25],

which can act to the left on the exp(iq · r) term to give

Mfi ∝ q · û
∫

d3r ei(k−q)·rψi(r), (3.15)

which is proportional to the Fourier transform of the initial wave function.

The dot product in the equation above can be evaluated in spherical coordinates as

q · û = q sin θ cosϕ (3.16)

with θ being the polar angle (with respect to the momentum of incident photon), and

ϕ denoting the azimuth angle (with respect to the photon polarization).

On insertion of the hydrogen-like K-shell electron wave function for the initial state

ψi(r) =

√
Z3

πa3
0

e
−Zr
a0 , (3.17)

with Z as the atomic number and a0 = ~2/mee
2 the Bohr radius, equation (3.15) yields

dσph

dΩ
∝ sin2 θ cos2 ϕ

(1− v cos θ)4
Z5, (3.18)

where v stand for the velocity of the ejected electron. For unpolarized photons, the

cos2 ϕ term should be replaced by 1/2.

The observation that most of the electrons are emitted in the direction û (θ = 90◦)

and no electrons are emitted in the direction of k (θ = 0◦) can be intuitively understood

from a classical picture of electromagnetic waves. A quantum interpretation is that the
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3.2. Radiative Recombination I: Approximate Methods

nonrelativistic absence of electron spin forbids forward or backward emission, since the

electron cannot carry away the photon spin of unity, as shown in figure 3.3.

Figure 3.3: Comparison between non-relativistic description and a fully relativistic one.
In the former case, the electron spin does not couple to the orbital angular
momentum therefore the forward (backward) emission of photon is forbidden
due to angular momentum conservation. Whereas in the latter, the angular
momentum can be conserved by the flip of the spin projection, therefore
forward (backward) emission is allowed.

If one adopts further dipole approximation, i.e. exp(ik · r)→ 1, no angular dependence

appears in the denominator and the differential cross section of photoelectric effect is

given by a pure sin2 θ distribution in the emitter frame.

From now on, the “prime” convention is recovered to continue the discussion of RR.

The detailed balance preserves the proportionality, as a consequence the differential cross

section for radiative recombination is given by:

dσRR

dΩ′
∝ sin2 θ′

(1− v cos θ′)4
. (3.19)

By transforming this expression into laboratory frame with help of formulae for angle

and solid angle element as in equations (2.12) and (2.13)

cos θ′ =
v − cos θ

1− v cos θ
dΩ′

dΩ
=

1

γ2(1− v cos θ)2
,
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3.2. Radiative Recombination I: Approximate Methods

the final result reads
dσRR

dΩ
∝ sin2 θ, (3.20)

which is a pure sin2 θ distribution in the laboratory frame.

This peculiar cancellation between the effects of the retardation, i.e. of higher mul-

tipoles (leading to a deviation from a sin2 θ distribution in equation (3.18)) and the

Lorentz transformation to the laboratory system has been first observed by Spindler et

al. [47]. It will be shown by the rigorous calculations in a later section that this general

behavior is still approximately valid for rather high projectile energies.

Figure 3.4: (a) Experimental angular distribution for REC into the K-shell of bare ura-
nium in collisions with N2 at a kinetic energy of 309.7 MeV/u compared
to the fully relativistic theoretical prediction. The latter was scaled to co-
incide with the experimental value at 90◦ (laboratory system). The finite
cross section near zero degree is almost exclusively due to the so-called spin-
flip contribution, while the dashed line illustrates the non-relativistic sin2 θ
emission pattern. (b) Same as figure (a) but plotted in the emitter frame
which corresponds to the electron emission characteristics for the photoion-
ization process. Here the spin-flip contribution is smeared out and hardly
detectable. Figure reproduced from Th. Stölker et al. [6].
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3.2. Radiative Recombination I: Approximate Methods

The cancellation effect of the RR/REC angular distribution yields a significant ad-

vantage of REC experiments over the direct photoionization experiments, namely, the

clear identification of the magnetic spin-flip transitions leading to a non-zero emission

probability along the collision axis (c.f. figure 3.3). This is illustrated in figure 3.4, where

the spin-flip contribution to REC photons’ angular distribution is detectable but to the

photoelectrons’ distribution (practically) not, because the Lorentz transformations of

angle and solid angle smear the contribution over the whole angular range in the latter

case.

3.2.3 Stobbe Formula

The Born approximation described in the previous subsection is inadequate for larger

values of Z or if the photon energy is not large enough, in which case the ejected electron

is strongly affected by the Coulomb potential of the mother nucleus and therefore has

to be described by Coulomb-continuum wavefunctions instead of a simple plane wave.

Following this consideration, Stobbe [48] has derived the photoelectric cross section per

K-shell electron within dipole approximation. By applying detailed balance, the Stobbe

formula gives the RR cross section for recombination into an empty K-shell:

σStobbe
RR =

28π2

3
λ2
c(

ν3

1 + ν2
)2 e−4ν cot−1 ν

1− e−2πν
(3.21)

where λc = ~/mec is the (reduced) Compton wavelength of the electron and ν = αZ/β

is the Sommerfeld parameter. The constants in front of the ν-dependent terms make up

a factor of 9164.7 barn. For the experimental parameters (150.5 MeV/u Xe54+ colliding

with H), the ν-dependent part amounts 5×10−3, and therefore the total RR cross section

per K-shell vacancy per target electron is roughly 46.25 barn.

The Stobbe formula proves to be quite useful to estimate the total cross section of the

REC into the K-shell up to projectile energies of the order of 1 GeV/u, corresponding to

electron kinetic energies below the electron rest energy, as shown by figure 3.5. However,

its pure dipole characteristics (sin2 θ distribution and 100% polarization) is not able to

describe the subtle details of the angular distribution of of RR/REC photons, such

as the contribution from spin-flip transitions (c.f. figure 3.4 and reference [6]) and the

depolarization caused by the magnetic field, as will be shown by the exact calculations

discussed in the next section.
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3.3. Radiative Recombination II: Density Matrix Theory

Figure 3.5: Total electron capture cross section per target electron for heavy bare ions
(ZP ≥ 54) in collision with light target. The blue line shows the fully rel-
ativistic calculation and the red dashed line is the prediction of the non-
relativistic dipole approximation, which is in good agreement with the ex-
perimental finding up to an energy of the order of GeV/u [5].

3.3 Radiative Recombination II: Density Matrix Theory

Following closely the approach of A. Surzhykov et al. [49, 50], the density matrix for-

malism is applied in this section to calculate the cross section as well as the photon

polarization of the RR process in a fully relativistic manner. It should be pointed out

that the nucleus will be treated as a spinless point with infinite mass whereas the QED

effects such as vacuum polarization and electron self energy will not be included neither.

Thus the initial state is an electron with an asymptotic 4-momentum p and spin

projection ms, which can be represented by a density operator ρ̂e.

Using the transition operator R̂(k) = α · û exp(ikr) as described in preceding subsec-
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3.3. Radiative Recombination II: Density Matrix Theory

tion 3.2.1. The final state density operator can be expressed as

ρ̂f = R̂†ρ̂eR̂, (3.22)

which describes the emitted photon with wave vector k and helicity λ (projection of spin

onto the direction of k) plus the electron in a bound state |Jb µb〉.
To measure the angular distribution of the emitted photons without resolving the

polarization of the light, the spin state of the bound electron, and the spin projection of

the initial electron, a projector of the following form

P̂k =
∑
ms λµb

|pms〉 |kλ〉 |Jb µb〉 〈Jb µb| 〈kλ| 〈pms| (3.23)

can be taken to project out all those quantum states of the final system that results in

a count in the detector systems, which leads to an angular distribution as in [13]

Tr(P̂kρ̂f ) =
1

2

∑
ms λµb

∣∣∣〈Jb µb,kλ| R̂† |pms〉
∣∣∣2 . (3.24)

To retrieve the photon polarization, a set of projectors can be formed similarly. How-

ever, there is a more convenient way: to retain the reduced density operator of the

outgoing photons, ρ̂γ = Trµb(ρ̂f ) . Since, as already discussed in the subsection 2.1.4 of

the physics background, the photon density matrix

〈kλ| ρ̂γ |kλ′〉 =
1

2

[
1 + P3 −P1 + iP2

−P1 − iP2 1− P3

]
(3.25)

is directly related to the Stokes parameters P1, P2, and P3 of the emitted light, which

are also used experimentally as measure of the polarization properties.

The photon matrix elements

〈kλ| ρ̂γ |kλ′〉 =
∑

µbmsm′s

〈pms| ρ̂e |pm′s〉 〈Jb µb,kλ| R̂† |pms〉 〈pm′s| R̂ |Jb µ′b,kλ′〉 (3.26)

are essentially determined by the transition matrix elements known from the previous

discussion

〈Jb µb,kλ| R̂† |pms〉 =

∫
d3r ψ†Jb µb(r)α

† · û∗λ e−ik·rψpms(r), (3.27)
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3.3. Radiative Recombination II: Density Matrix Theory

which present the general form of the relativistic photon-electron interaction in a one-

electron ion. For its evaluation, the quantization axis of spin is usually chosen either as

the photon direction, which results in generally faster numerical calculations [13, 49], or

as the electron momentum, which allows for the inclusion of definite spin states of the

incident electron or the residual ion and therefore an appropriate interpretation of spin-

flip, at the cost of more computation time. For the approach discussed in this section,

the latter is adopted.

Once the quantization axis is fixed as the electron momentum direction, the photon

field needs to be rotated to this direction, which can be achieved by Wigner rotation of

its multipole expansion:

ûλ eik·r =
√

2π
∞∑
L=1

M=L∑
M=−L

iL
√

2L+ 1AλLMDL
Mλ(k→ z), (3.28)

where the summation runs over all azimuthal quantum number L and magnetic quantum

numberM ; DL
Mλ(k→ z) denotes the Wigner rotation and the multipole componentAλLM

can be decomposed further into the magnetic and electric parts as

AλLM = ALM(m) + iλALM(e). (3.29)

By expanding the product of two Wigner rotations, the photon density matrix 3.26

can be represented as

〈kλ| ρ̂γ |kλ′〉 =
∑
ν µ

Dν
0µ(0, θ, 0)

∑
Lπ L′ π′

βν µLπ L′ π′(λ, λ
′), (3.30)

where θ denotes the angle between photon emission and electron momentum. The

angular parameter

βν µLπ L′ π′(λ, λ
′) =

∑
ms µb

iL
′+π′−L−π(−1)ms−µb

√
(2L+ 1)(2L′ + 1) 〈pms| ρ̂e |pms〉

× λπλ′π
′
〈L′ms − µb Lµb −ms|ν0〉 〈Lλ′ L − λ|νµ〉

× 〈pms|αAπLms−µb|κb µb〉
∗〈pms|αAπ

′

L′ms−µb|κb µb〉 (3.31)

represents the contribution of each multipole order of the radiation field. The 〈....|..〉’s
are Clebsch-Gordan coefficients and 〈pms|αAπLM |κb µb〉 denotes the matrix element for

either the electric (π = 1) or magnetic (π = 0) multipole free-bound transition of the
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electron.

A further simplification can be achieved by decomposing the free electron wave func-

tion |pms〉 into a partial wave expansion

|pms〉 =
∑
κ

ilei∆κ
√

4π(2l + 1)〈l 0 1

2
ms|j ms〉|E κ j ms〉, (3.32)

where the summation runs over all partial waves |Eκjms〉 with the energy of E and

the Dirac angular momentum quantum number κ = ±(j + 1/2); the quantum number

l = j ± 1/2 for the nonrelativistic orbital angular momentum represents the parity of

the partial wave whereas the ∆κ is the Coulomb phase shift.

Making use of the Wigner-Eckart theorem, the problem reduces to the evaluation of

the reduced density matrix elements 〈E κ j||αAπL||nb jb〉 describing the interaction of

an electron with the radiation field for a standard free-bound transition, which can be

calculated with procedure introduced in [51].

Figure 3.6: Calculated angular distribution and degree of linear polarization of the RR
into K-shell of Xe54+ with 150.5 MeV/u kinetic energy and U92+ with 400
MeV/u kinetic energy, in comparison with the pure non-relativistic dipole
characteristics. For the case of Xe, deviation is observable but insignificant,
whereas for the case of U, the deviation is severe.

This density-matrix-based formulation is implemented in a Mathematica program by

A. Surzhykov et al. [52], which is used for the production of the RR database of the

REC calculator that will be introduced in section 5.1. The sample calculations for the

experimental condition of this work, i.e. 150.5 MeV/u Xe54+, and for comparison, the

case of 400 MeV/u U92+ is shown in figure 3.6, where certain deviation from the sin2 θ
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distributions predicted by the non-relativistic theories can be observed. The predictions

about the degree of linear polarization obtained from this fully relativistic theory were

tested experimentally, as will be shown in the next chapters.
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4 Experimental Study of REC

The underlying measurement campaign of this work was carried out at the GSI Helmholtz

center for heavy ion research, one of the biggest research centers in Germany. It was

founded in 1969 under the name of Gesellschaft für Schwerionenforschung. The project

was triggered by nuclear scientists of the three Hessian universities in Darmstadt, Frank-

furt and Marburg due to the strong desire for a central facility in nuclear physics. In 2008

it was renamed as GSI Helmholtzzentrum für Schwerionenforschung GmbH. Today GSI

operates a worldwide unique large-scale accelerator facility for heavy ions, which aims

for new insights about the building blocks of matter and the evolution of the universe.

Based on GSI, the Facility for Antiproton and Ion Research, FAIR, is currently under

construction, which will extend the energy range and intensity of ion beams, particu-

larly for short-living isotopes, as well as add a powerful anti-proton production facility

[53–55].

This chapter starts with a brief overview of the GSI infrastructures that are relevant

to this work. Followed will be a description of experimental techniques and setups.

4.1 Instrumentation – GSI

The backbone of the GSI are the ion acceleration and storage facilities (see figure 4.1),

namely the universal linear accelerator (UNILAC), the Schwerionensynchrotron (SIS)

and the experimental storage ring (ESR).

4.1.1 Heavy Ion Accelerators

In order to produce highly charged ions, successive collisions with a center-of-mass en-

ergy exceeding the binding energy of the to-be-removed electrons are necessary. As an

example, for the case of uranium, the heaviest stable element on earth with a K-shell

binding energy of about -130 keV. Therefore a minimum of 130 keV of energy should be
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Figure 4.1: Layout of the GSI ion acceleration and storage facilities. Low-charged ions
produced at ion sources can be pre-accelerated the to about 10% speed of
light at UNILAC. Selected ions are injected into the SIS and get further
accelerated up to GeV/u of kinetic energy. Finally, the high energy ions
are injected into ESR and get stored down and cooled (decelerated if neces-
sary). A variety of physics studies can be carried out at various experimental
stations.

transferred during the collision to eject a K-shell electron to generate hydrogen-like or

even bare uranium ions.

This can be accomplished either with a relativistic heavy ion beam (with more than

300 MeV/u of kinetic energy) produced in a large accelerator hitting a stationary target

(“stripper foil”) as it is done at the GSI accelerators [56], or with an energetic electron

beam (with up to 200 keV of kinetic energy and 5000 A/cm2 of current density) hitting

stationary ions as was done at the Livermore Super-EBIT [57].

In an EBIT, a mixture of various charge states is always present, yet the ion species

of interest is not necessarily the most abundant. In contrast, the former method has the
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advantage of enabling the production of intense ion beams with only one desired charge

state. For this purpose, the two-staged GSI accelerator facility is indispensable.

Figure 4.2: Schematic description of the UNILAC: In HSI, low-charge ions are generated
by (subsequent) acceleration and stripping in a gas target. Then the ions are
accelerated to an energy of 11.4 MeV/u in the poststripper section. After
passing through the foil stripper, the ions with desired charge state (typically
up to U73+ ) will be inject into the SIS18.

At first stage, the UNILAC accelerates low-charge ions generated at ion source to an

energy of 11.4 MeV/u [58], corresponding to a velocity of about 10 % speed of light. At

this energy, U73+ can already be produced. After passing through so-called “stripper”

target (a thick carbon foil), most of the electrons are ejected due to atomic collisions.

The ions with the desired charge state will be magnetically selected out and fed into the

SIS for further acceleration (see figure 4.2 for comparison).

Thanks to its 216 m of circumference and 18.7 Tm of magnetic rigidity, the heavy-ion

synchrotron, SIS, puts eventually an energy gain of the order of GeV/u to the ions [59].

Through a final stripping and separation in the transfer beamline, bare ions with typical

kinetic energy of 400 MeV/u can be produced and then the injected into ESR and stored

there for physics studies.

4.1.2 Experimental Storage Ring

If it is the ion accelerators that make study of radiative electron capture (REC) into

highly charged ion possible in the first place, it is the experimental storage ring (ESR)

that makes it practically feasible (see figure 4.3).
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Figure 4.3: Schematics of the experimental storage ring ESR at GSI-Darmstadt. The
layout depicts the beam guiding (dipole-, quadrupole magnets), handling
system (kicker, RF cavities and electron cooler), diagnostics (Schottky noise
pick up) and the internal jet-target.
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As the main working horse for atomic physics experiments, the ESR has a circumfer-

ence of 108 m and a magnetic rigidity of 10 Tm. The geometrical properties together

with its ultra high vacuum (UHV) condition (about 10−11 mbar of base pressure) allows

the ESR to store ions ranging from H+ to U92+ with a typical energy of 5 MeV/u up

to approximately 400 MeV/u, with a corresponding revolution rate of the order 106 s−1

[60].

In the ESR, the initially hot ion beam injected from SIS, with an emittance of about

5π mm mrad, can be cooled through Coulomb collisions with a co-moving cold electron

beam in the electron cooler [61] (see figure 4.4). For efficient cooling of higher energy

beams (about 400 MeV/u), stochastic cooling is also available [62]. The cooling of

the beam reduces the emittance to 0.1π mm mrad or less and provides beam diameters

of less than 5 mm. This factor is particularly important for precise measurements at

the internal jet target, where a control over geometrical factors and possible Doppler

corrections is required. After cooling with a typical electron current between 50 and 250

mA, the relative longitudinal momentum spread ∆p/p of the ion beam is reduced from

approximately 10−3 to about 10−5 [61].

Figure 4.4: Schematic description of the working principle of the electron cooler of the
ESR: the characteristics of the cooling beam of electrons (blue) is imprinted
on the initially hot ion beam (red) via successive Coulomb collision.

Typical spectra of ion revolution frequencies before/after the cooling is shown in figure

4.5. The data were obtained using the so-called Schottky analysis which is a powerful
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tool to monitor the momentum distribution of the ion beam [63]. Besides the improved

beam quality, electron cooling offers in the meantime a measure for the velocity of the

stored ion, namely, the applied voltage.

Figure 4.5: Schottky frequency spectrum for a beam of U92+ ions at 295 MeV/u. The
broad distribution refers to the non-cooled beam, measured directly after in-
jection into the ESR. The narrow distribution reflects the momentum profile
of a continuously cooled ion beam [63].

In order to investigate ion-atom collisions in a low energy domain, another unique

feature of the ESR, the deceleration capability, can be used. The beam is rebunched and

decelerated while the magnetic field is gradually ramped down and the electron cooler is

switched off. At the final stage of beam handling, the electron cooler is switched on again

to improve the beam quality. In the case of bare uranium ions the lowest beam energy

achieved by this procedure is below 10 MeV/u. With the commissioning of HITRAP

[64], highly charged ions up to bare uranium at even lower energies (down to at rest are

expected) can be studied in precision experiments.

4.1.3 Internal Jet-Target

Many kinds of ion-atom collision phenomena, such as REC, can be studied at ESR’s

internal jet-target (see figure 4.6), which is designed to produce a uniform target beam

consisting of well-defined small clusters (see [65–67] for a detailed description of this

target). The target apparatus is divided into several stages where differential pumping
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is applied. Despite the formation of a stable gas jet inside the interaction chamber this

design preserves the UHV (about 10−11 mbar of base pressure) conditions in the ESR.

Figure 4.6: Schematic drawing of the internal gas target of the ESR [65].

Target gases currently available are: H2, N2, Ne, CH4, Ar, Kr and Xe. For the

expensive noble gases such as krypton or xenon, there is a recycle system available.

By expanding a gas through a Laval nozzle with typical diameters between 50 µm

and 5 µm, a target with a typical density of about 1013 cm−3 (typical density of solid

is of order 1021 cm−3, for comparison) is produced. When the ion beam circulating in

the storage ring pass through the gas target, they collide with the gas atoms. During

the collision they can lose or capture electrons and emit X-rays. Note that for atomic

physics studies, the gas target mainly serves as a collection of electrons and the rare
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interactions of the projectile ions with the nuclei of the target gas are usually not con-

sidered. Such a dilute target offers the advantage of minimizing unwanted effects of

multiple-collisions which is generally present in high-density solid state targets. Thanks

to the high revolution rate (of the order 106 s−1), even atomic interactions with small

cross sections (0.1 barn [5]) are also experimentally accessible.

The diameter of the target is about 5 mm, measured experimentally via scanning the

jet profile by low intensity ion beams with a small beam diameter [66].

At the scattering chamber, the interaction region can be investigated from many

different observation angles.

4.2 Experimental Setup

A sketch of the experimental setup for this work is shown in figure 4.7. This setup

is especially designed for angular distribution studies of REC. As indicated by the X-

ray detectors looking at the interaction region from various observation angles. All

detectors are separated from the vacuum environment of the ESR by either stainless

steel or beryllium windows with typical thickness of the order 50 µm. In addition, the

dipole magnet analyzes the charge states of the outgoing ion beam so that the X-ray

emission can be measured in coincidence with the down-charged projectiles.

An important feature of this setup is the employment of the 2D position-sensitive

Si(Li) detector serving as Compton polarimeter (see the subsection 4.2.1 for the details

about this detector). With an accurate knowledge about the polarization of the emitted

photons more insights can be gained into the REC dynamics.

The possibility to study photon emission close to zero degree is another important

feature of the current setup. For this purpose, an intrinsic germanium detector, Ge(i),

with four independent segments is mounted on a movable support.

The signals from the pre-amplifiers of the detectors were processed using standard

“nuclear instrumental standard” (NIM) and “versa module eurocard” (VME) electronic

modules, including timing filter amplifiers (TFA), constant fraction discriminators (CFD),

time-to-digital converters (TDC), and analog-to-digital converters (ADC). The resulting

data were saved to disk using the list mode data (LMD) format. Detailed descriptions

of the setup and the signal analysis modules can be found in the PhD theses by U.

Spillmann [68] and S. Hess [69].
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Figure 4.7: Sketch of the experimental setup for a detailed study of the angular distri-
bution and linear polarization of the REC radiation emitted in the capture
of electrons into bare xenon ions. Magnetic separation and detection of the
down-changed ions provides a coincidence condition for the recorded X-rays
leading to a reduction of background radiation.

4.2.1 Si(Li) Polarimeter

Even though first Compton polarimetry measurements using arrays of standard X-ray

detectors were performed already since the 1950s [70], efficient, precise and affordable

detector systems dedicated for (linear) Compton polarimetry have become available

just recently [15, 16], owing to the development of highly segmented solid-state X-ray

detectors.

Within the SPARC collaboration [71], a two dimensional position-sensitive detector

(see figure 4.8) dedicated for Compton polarimetry was developed and successfully im-

plemented in several experiments [19, 20]. This detector has as sensitive material a
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lithium-drifted planar silicon single crystal with a total area of 80×80 mm2 and a thick-

ness of 7 mm. Each side of the crystal is segmented into 32 strips with 2 mm width of

each strip. There are 50 µm wide grooves to isolate the segments against each other and

the whole active area is surrounded by a guard ring of 7 mm width to drain the leakage

currents [16].

Figure 4.8: Left: Photograph of the Si(Li) Compton polarimeter developed within the
SPARC collaboration. The crystal and the preamplifiers are located in the
detector head and connected to a LN2 dewar. Right: Sketch of the detector
crystal with the front side and the back side each being segmented into 32
strips giving a structure of 1024 pseudo-pixels.

Each strip is read out independently with a charge sensitive preamplifier providing a

time resolution of order 100 ns and a typical energy resolution of 2.5 keV at 100 keV.

Moreover, the positive charge carriers are collected in on the front side while the negative

carriers on the back. Combining this to the orthogonal orientation of strips on both sides

results in total number of 1024 pseudo-pixels with two dimensional position sensitivity,

as can be seen from figure 4.8.

It should be pointed out that the experiment presented in this thesis was performed

back in 2008 and the data were analyzed then by S. Hess [69]. However, the focus of

that work was devoted to the technical challenges in the preparation of the experimental

setup with the then newly developed Compton polarimeter, as a result the analysis of

the obtained data was preliminary. The data analysis presented in the following chapter,

on the other hand, aims to be more precise and sophisticated thanks to the improved

methods and the experience gained since 2008.
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5 Outcomes of Study

During the period of my master thesis, there are two primary outcomes: One of them is

a calculator for REC photon properties; the other is an improved analysis of the REC

linear polarization measured with a 2D position sensitive Compton polarimeter. The

following sections will be devoted to the presentation and discussion of these results.

5.1 Calculator for REC Cross Section and Polarization

Though the radiative electron capture can be formulated theoretically in a rigorous

fashion, the evaluation of the cross sections and polarization properties still relies on

numerical computation (c.f. chapter 3 and references [13, 49, 50]). Due to the complexity

of the bound-free integral of the electron wavefunctions, such calculations, even for the

capture into initially bare ions, are computationally expensive. For example, the time

it takes to get convergent results for a reasonable collision energy (e.g. 150.5 MeV/u

as in this work), is of the order of a few minutes for a commercially available table-

top computer, and that counts only for the recombination into a single orbital of the

projectile ion. With increasing collision energies, the time needed will be even longer,

as more partial waves are necessary to represent the incident electron (c.f. section 3.3).

For instance, a calculation for RR into a single orbital of a projectile with 1 GeV/u of

kinetic energy takes about half an hour.

Alternatively, available are tabulated values produced mainly by Eichler and Ichihara

et al. [72, 73], where total and angular differential cross sections for many (but not

all) elements and collision energies can be found. In practice, however, there are many

limitations with these tables. Firstly, the tabulated total cross sections are not for

REC but for RR into bare ions. Secondly, one usually does not directly get the cross

sections for the required ion species and energies from the papers, especially for the

angular distribution where only very limited data sets are given. Though in the original

publication there are links to additional supplementary files that provide a much more
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comprehensive database, these links to the data repositories are no longer accessible.

Ultimately, the polarization properties of the RR/REC photons are not included in the

tables at all.

Theses shortcomings inspired us to create a fast REC calculator, which combines a

comprehensive database and a proper interpolation procedure to provide the scientific

community an easy access to the angular distribution of REC cross sections and degrees

of linear polarization, for almost arbitrary kinematics and observation angles.

5.1.1 Database of Elements

Originally initiated by the need to create a model for the REC photon properties as input

for Monte Carlo simulation to improve the understanding of the polarimetric measure-

ments (see subsection 5.2.3), the choice of the projectile atomic number, ZP , has two

aspects of consideration. On one hand, typical projectile choices such as uranium, gold

and xenon are included. On the other hand, the ZP ’s to-be-chosen have to homoge-

neously cover the whole range from 1 to 92 to support the interpolation for an arbitrary

ZP . Consequently, H, N, Ar, Kr, Xe, Dy, Au and U have been chosen as representatives.

At the moment, the database consists of complete sets for the angular differential cross

sections and degrees of linear polarization for nine orbitals (1s1/2 to 3d5/2) of each pro-

jectile species listed above. For RR/REC into higher orbitals, the spectral lines cannot

be resolved by the state-of-art standard X-ray detectors, leading to a quasi-continuous

spectral distribution. In a future extension of the REC calculator, this continuum might

be modeled by an extrapolation of the trends observed for the angular distribution and

the polarization properties of recombination into the lower orbitals.

For each orbital, there are 90 projectile energies between 5 MeV/u and 400 MeV/u,

corresponding to the storage capability of the current ESR. An extension of this database

to a kinetic energy of 5 GeV/u is in preparation, to accommodate the storage capability

of the high energy storage ring (HESR) at at the future FAIR facility.

The numerical evaluation of the RR cross section and polarization were performed in

a fully relativistic manner using the code provide by A. Surzhykov [52], which is a part

of the toolkit DIRAC [74]. The accuracy of the calculation is mainly determined by the

accuracy of the continuum wavefunction representing the initial state of the recombined

electron, which, during the evaluation, is described by a series expansion in terms of the

partial waves (see section 3.3). To this end, one has to carefully choose the number of

partial waves, ν = 2κmax, with κmax being the maximum of the quantum number for

the Dirac angular momentum associated with the partial wave, for the expansion: a
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too small choice of κmax may lead to truncation errors; a too large value, on the other

hand, may lead to explosion of numerical errors due to the rapid oscillations of the radial

part of the continuum wavefunction. With a proper choice of κmax, an uncertainty of

per cent level can be reached for the parameter range concerned in this work [52]. The

uncertainty arises from the restrictions of the model, where QED and finite nuclear size

and mass are not included.

The computation time is another factor when choosing the partial wave numbers, espe-

cially when mass production of data within limited time is necessary. A properly chosen

κmax may reduce significantly the computation time, which scales, roughly speaking, to

the third power of κmax.

In practice, the choice of κmax was made on a try-and-error basis. Several test calcula-

tions were carried out and convergence was judged by comparing the total cross sections

with the tabulated values [72]. Due to the lack of both experience and reliable crite-

ria for convergence, my choice of parameters for test calculations were later proven not

representative enough. As a consequence, the values of κmax’s for massive calculation

were more on the tend-to-be-small side, which, as will be shown shortly in subsection

5.1.3, limits the reliability of the calculator at relatively high collision energies (about

400 MeV/u). However, it has to be stressed that for the range of projectile energies and

ion species that were experimentally studied for this work, the REC calculator has a

reliable underlying RR database with an accuracy up to per cent level (see figure 5.1).

Furthermore, due to the absence of QED effects in the model, the energy levels of

projectile, in particular the 1s levels of high-Z ions, had systematic discrepancies from the

observed spectral lines. In order to correct this inconsistency, the Lamb shift corrections

to the Dirac binding energies tabulated by W.R. Johnson and G. Soff [75] were used, for

the 1s1/2 to 3s1/2 states.

Finally, the impulse approximation (see section 3.1 for more information) was imple-

mented to get the REC spectra, which was realized by folding the RR data with target

electron momentum distribution (Compton profile) taken from the tables produced by

Biggs et al. [43].

5.1.2 Interpolation Procedure

In general, spline interpolation developed by Akima [76] was applied to obtain RR/REC

characteristics in between the rigorously calculated grid points. This method produces

a natural-looking curve when it is used for fitting smooth data. However, the Akima

method tends to produce undulations when tempting to interpolate nearly straight lines.
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For such cases, therefore, a simple linear interpolation procedure was used.

There are, roughly speaking, two steps of interpolation implemented in the calculator.

In the first step, the RR cross section and polarization properties are interpolated with

respect to the atomic number of the projectile, ZP , resulting in the RR data for the re-

quired (initially bare) projectile ion with collision energies covering the whole range of

the underlying database. Moreover, to create a better shape of curve for the Akima in-

terpolation, the total cross sections are divided by Z5
P , while the angular differential cross

sections are firstly normalized individually with respect to the maximum of each curve.

As for the (angle-dependent) degree of linear polarization, PL, Akima interpolation was

directly applied.

In the second step, REC spectra and polarization properties are produced by convolv-

ing the z-projection of target electron momentum profile, i.e. the Compton profile, with

the RR data obtained from the previous step using equation (3.6). Particularly, the

Compton profile was interpolated with log-log spline fit as function of the longitudinal

momentum projection, determined by the photon energy of interest, and the RR data

of the projectile ion were interpolated accordingly.

It should be noted that the interpolations were performed in the projectile frame, then

the interpolated values were transformed into laboratory frame.

5.1.3 Accuracy of Interpolation

Figure 5.1 depicts the comparison between rigorously calculated (in blue) and inter-

polated (in pink) K-shell RR angular differential cross sections and degrees of linear

polarization in the laboratory frame for various ZP ’s at a collision energy of 200 MeV/u.

One can observe that with the increase of ZP , the cross cross sections increase whereas

the degrees of linear polarization gradually decrease. Most importantly, interpolation

of neither cross section nor polarization exhibits significant discrepancy from the rig-

orously calculated values over almost the whole angular range. Exceptions occur only

for observation angles near 180◦, where the degrees of polarization drop sharply and a

significant deviation is visible. This issue can be solved in the future by an optimized

interpolation algorithm for this particular range of observation angles.
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Figure 5.1: Interpolated REC angular differential cross sections and degrees of linear po-
larization versus the rigorously calculated values for projectile Zp’s between
15 and 90. The data is given in the laboratory frame. A good agreement is
found.

For a quantitative figure of merit, figure 5.2 plots for several collision energies the

root-mean-square deviation defined as

∆rms =

√√√√√ N∑
i=1

(Vi(i)−Vc(i)
Vc(i)

)2

N(N − 1)
, (5.1)

where subscripts c and i indicate the values of calculation and interpolation, respectively;

summation runs over all sample points of observation angles, which range from 1◦ to

179◦ with 1◦ step size, in the emitter frame.

The relative deviations of the interpolation are generally below per cent level except

for the 400 MeV/u case, where a relatively high deviation can be observed. This was

caused by the improperly chosen partial wave numbers during the production of database

introduced above. It was realized later that this relative deviation can also be used as

a criterion for convergence of test calculations, e.g. by comparing the test calculation

with κmax = κ and that with κmax = κ + 1, therefore, during the extension of database

to 5 GeV/u, a proper choice of partial wave number hence the accuracy of the the RR

database can be guaranteed.

Because the REC calculator is able to, up to percent accuracy, resemble the rigorous

calculation, its prediction of the photon polarization properties will be taken as the

theoretical value and compared with the results of experimental data in the next section.
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Figure 5.2: The root-mean-square deviation, as a figure of merit, of the interpolated
values with respect to the rigorously calculated ones. Solid symbols are
for the cross sections whereas the empty ones are for the degrees of linear
polarization. The relatively large discrepancies for the 400 MeV/u case are
due to the inaccuracy of the RR database caused by the improper choices of
partial wave numbers, which will be solved by future calculations, see text
for details.

5.2 Linear Polarization of REC Photons

The experimental data obtained with the 2D Si(Li) Compton polarimeter (see figure 4.7

for the details of experimental setups) were analyzed with a program based on SATAN

– System to Analyze Tremendous Amounts of Nuclear data [77]. For the purpose of

adjusting free parameters of models to fit experimental data, the Fortran-based function

minimizaion routine developed at the CERN, MINUIT [78], was employed. In this

section only the results of analysis will be shown, details of the underlying algorithms

can be found in the PhD thesis of G. Weber [24].

5.2.1 X-ray Spectrum

Detector Calibration

The energy calibration of the Si(Li) polarimeter was carried out with an Am-241 source

and a Eu-152 source, having several well known spectral lines. Therefore the raw spectra
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of the calibration sources (figure 5.3) offer the information of the correspondence between

the energy deposition in the detector and the analog-to-digital converter channel for each

segment of the detector. To be specific, a linear function was adjusted to the calibration

data to obtain energy calibration parameters.

Figure 5.3: Pulse height spectra obtained from calibration sources: on the left is Am-
241 and on the right is Eu-152. It can be seen that the first 32 strips (high
voltage side of the detector) have a slightly higher noise level than the strips
33 to 64 (ground side).

Correction for Doppler Effect

The calibrated spectra of the X-rays emitted from the interaction of the ion beam with

the hydrogen gas target are shown in figure 5.4. One can observe that the strips 0-31,

which were oriented parallel to the projectile momentum during the experiment, suffer

from Doppler broadening whereas the vertically oriented ones, strips 33-64, Doppler

shift. Both features are results of the Lorentz transformation of the photon energies

from the reference frame of the relativistic projectile ion into the laboratory system.

With help of the projectile velocity and the position information offered by the seg-

mentation, the above mentioned relativistic Doppler effect can be corrected with the

formula

~ω∗ = ~ω
1− β cos θ

1− β cos θobs

, (5.2)

where ~ω∗ and ~ω are the photon energies after and before correction, respectively; β

is the projectile velocity measured in c; θ and θobs are respectively the polar angles of

the registered event and of the detector centroid, measured in laboratory frame with
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5.2. Linear Polarization of REC Photons

Figure 5.4: The calibrated REC spectra: the horizontally (parallel to projectile momen-
tum) oriented strips (0-31), suffer from Doppler broadening; the vertically
oriented ones (33-64) exhibit Doppler shift, as indicated by the variation of
peak position among the strips.

respect to the projectile momentum. Note that this correction yields a spectrum for

each segment as if it was located in the center of the detector.

Particularly, in order to get the actual polar angle θ, the distance from the detector to

the interaction region d, and the central observation angle θobs, have to be determined

accurately (see figure 5.5(a)), since it is calculated with the relation

θ = θobs + arctan(x/d), (5.3)

where x is the relative horizontal position of the event with respect to the detector

centroid. It should be noted that a possible rotation of the detector, θrot, has not been

included in the fitting routine yet.

The above mentioned quantities (d and θobs) were determined by adjusting the Doppler

shift of K-REC peaks (~ω′ = 123.86 keV in projectile frame) of the vertically aligned

strips (strip 33-64, as in figure 5.4) using equation

~ω =
~ω′

γ(1− β cos θ)
, (5.4)

where γ is the Lorentz factor of the projectile, as shown in figure 5.5(b).
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5.2. Linear Polarization of REC Photons

Figure 5.5: (a) Schematic description of the definition of the fitting parameters; (b)
Linear fit of the Doppler-shifted K-REC peaks.

After a χ2-minimization, the resulting distance from interaction region to detector is

d = 32.68± 0.19 cm, (5.5)

and the central observation angle is

θobs = 90.53(2)◦, (5.6)

with a reduced χ2 of 0.52. Both quantities are within the expected range determined by

the geometry of the target chamber and its view ports.

Single Hit Spectrum

After the correction of Doppler effect, by summing over all the strips and taking into

account only the events with multiplicity of one (there is only one enegy deposition

event at once in the detector), a spectrum as in figure 5.6 is obtained. The restriction of

multiplicity selects out mainly the events where the incident photon was absorbed via

photoionization and its energy was completely deposited in the detector. Therefore such

a single hit spectrum is the best reflection of the spectral characteristics of the incident

radiation.

The most prominent feature in this spectrum is the Bremsstrahlung emitted by the

free electrons generated during the interaction (ionization of target electrons into the

continuum states of the projectile). However, the characteristics of REC together with

the geometry of setups (see figure 4.7) allows us to apply a coincidence condition, so
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5.2. Linear Polarization of REC Photons

Figure 5.6: Doppler-corrected single hit X-ray spectrum. In the spectrum coincident
with down-charged ions (red dotted line), all lines can be attributed to either
recombination into the projectile or subsequent characteristics transitions.

that only photons arriving at the detector with a fixed delay with respect to the down-

charged ion will be registered, the rather random (lack of correlation to the capture of

target electrons) Bremsstrahlung process can be therefore strongly suppressed. Thus an

almost background-free spectrum can be obtained where several spectral lines can be

readily identified, including the Doppler-shifted REC’s from K-shell (at about 106 keV),

from the whole L-shell (at about 79 keV), from the M- and all higher shells (at about 74

keV). Also visible are Doppler-shifted Lyman series of the hydrogen-line Xe53+ ion (at

about 30 keV), which originates from the capture into excited states accompanied by

subsequent characteristic transitions. Due to the relative poor energy resolution of the

Si(Li) detector, the substructure of the Xe Lyman series can not be distinguished. In

the further analysis only the X-rays that are in coincidence with down-charged projectile

ions will be investigated. It should be noted that the detection efficiency for the down-

charged ions was only about 70% during the experiment. However, the resulting loss of

statistical significance for the REC peaks is not crucial.

At this moment, only the spectral lines with energy above about 70 keV can be subject

to polarization analysis based on Compton scattering. Because in the Compton analysis,

events of interest are the scattering events with longitudinal scattering angle θ ≈ 90◦

due to the high polarization sensitivity, however, for photons with energies lower than

70 keV, the recoil energy of these events are significantly below 10 keV and hence can

not be distinguished from the electronic noise (indicated by the red region near the

bottom of figure 5.4) of the preamplifiers that is of the same order of magnitude. When
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5.2. Linear Polarization of REC Photons

the electronic noise is not cut-off by a lower threshold, false Compton events might be

observed where the recoil electron is in fact a noise signal. On the other hand, true

Compton events may get lost because noise signals lead to a wrong estimate of energy

deposition within the detector.

With the restriction of photon energy, the K-REC and L-REC lines can be safely ana-

lyzed. In the following subsection the K-REC line will be taken as a brief demonstration

of the Compton analysis. A more comprehensive description of the analyzing procedure

can be found in [24].

5.2.2 Linear Polarization

The starting point of the polarization analysis is the identification of the Compton

events that were recorded by the detector: A potential Compton event should meet

the minimum requirement that there are two events simultaneously registered in the

detector: the recoil electron and the scattered (and then stopped) photon.

For the K-REC at about 106 keV, well below half the rest mass energy of an electron,

one can safely identify the event with the smaller energy deposition as the recoil electron

and the other as the photon (c.f. subsection 2.2.2). Due to the tiny free path length

of the electron, the position where the electron is registered will be taken as the place

where the scattering happens. Thus the relative position of the photon with respect to

the electron reflects the azimuth angle ϕ of the Compton scattering. Meanwhile, the

polar scattering angle θ can be obtained via the kinematics by solving equation (2.25)

for the scattering angle θ as

cos θ = 1− mec
2

Eph

+
mec

2

Eph + Eel

. (5.7)

A typical scattering intensity distribution together with the corresponding θ distri-

bution can be found in figure 5.7, where only the events with |θ − 90◦|<15◦ are shown.

Because in this range the azimuth scattering distribution exhibits the highest sensitivity

to the incident photon polarization (see section 2.3), plus, the scattered photons have

the highest chance to be stopped within the detector.

By binning the counts for different angle ϕ, the azimuth scattering intensity distribu-

tion can be obtained, from which the degree of linear polarization PL, of the incident

beam can be subtracted. It should be already pointed out that if one neglects the ac-

tual spatial distribution of events within a pixel and takes simply a delta distribution

(at the central point of a pixel for instance) to represent the position, the obtained ϕ-
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Figure 5.7: (a) Scattering intensity distribution of K-REC photons with an energy of
about 106 keV impinging on the Si(Li) polarimeter. (b) The corresponding
θ distribution. In the scattering plot, only the events with |θ− 90◦|<15◦ are
shown, which is marked by the brown lines in the θ plot.

distribution exhibits strong geometrical artefacts, as shown in figure 5.8. Such artefacts

can be corrected, to the first order, by smearing the point-like distribution to the whole

pixel with a uniform distribution.

Reconstruction of Linear Polarization of Incident Photons

In order to retrieve the degree of the linear polarization from the azimuth distribution

of scattering intensity, the Klein-Nishina formula (2.27)

dσ

dΩ
=
r2
eη

2

2

(
η + η−1 − 2 sin2 θ cos2 ϕ

)
,

introduced in section 2.2.2 is taken as a starting point of the fit function:

Firstly, the azimuthal dependence for a single linearly polarized photon in the equation

above should be replaced by the expression for a partially polarized photon beam, with

the degree of linear polarization being PL:

cos2 ϕ→ (1− PL)/2− PL cos2 ϕ. (5.8)

This substitution can be understood as the weighted mean of the contributions from the
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5.2. Linear Polarization of REC Photons

non-polarized part, a uniform ϕ-distribution with height of 1/2, and from the polarized

part, a cos2 ϕ distribution.

Then the dependence of polar angle θ has to be integrated over the range to be

considered to make the function univariate. As the final result, the form of applied fit

function can be given as [79]

I(ϕ) = B [1− CPL cos(2ϕ− ϕ0)], (5.9)

with the normalization constant for the total spectral intensity

B =
Itot

Nϕ

, (5.10)

and the modulation depth

C =
1

Itot

∑
θ

I(θ)η2 sin3 θ

η sin θ + η3 sin θ − η2 sin3 θ
, (5.11)

where Itot is the total number of Compton events present in the spatial distribution

to be analyzed; Nϕ is the number of ϕ-bins; and I(θ) corresponds the experimentally

measured θ-distribution shown in figure 5.7(b). The parameter φ0 takes into account a

possible rotation of the detector about the incident photons’ momenta.

By fitting the scattering intensity distribution with equation 5.9, reconstructed degree

of linear polarization of the incident photon beam is, P S
L , is obtained:

P S
L = 0.927± 0.008 (5.12)

with a reduced χ2 of 4.12. Note that here and in the following, only the statistical

uncertainty yielded by the minimization algorithm is presented.

This result still suffers from geometrical artefacts due to the lack precise knowledge

about the actual position distribution within the finite-sized pixel. Furthermore, the lim-

ited energy resolution and many other factors [24] also tend to lower the the anisotropy

of the scattering intensity distribution, which results in a quality factor

Q =
Pout

Pin

<1

of the polarimeter. More specifically, the degree of linear polarization obtained by the

procedure above is likely to be significantly smaller than the actual degree of polarization
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Figure 5.8: Comparison between the Klein-Nishina fits for raw data (red solid square)
and smeared data (black empty square). The geometrical artefact – the
strong fluctuation of the raw data is significantly reduced by the smearing.

of the incident radiation. In order to get correct interpretation of the measurements,

precise knowledge of the quality factor is necessary, which leads to the discussion of the

next subsection.

5.2.3 Monte Carlo Simulation

In order to improve the data analysis, the usage of Monte Carlo simulations to model

the response function of the polarimeter detector is necessary. Such simulations should

lead to a twofold benefits: a correction of geometrical artefacts and other effects in the

spatial distribution associated to the detectors properties, and a calibration curve for

the polarimeter quality factor.

In this work, the Monte Carlo simulations were performed with the electron gamma

shower package, EGS5 [80], which provides the propagation and interaction algorithms

for photons and electrons. In addition, the electronic noise and the charge splitting

between neighboring segments were included with a simplified model (see references [24,

81] for more information). Moreover, the experimental geometry including the finite size

of the interaction zone of gas target and ion beam and the relativistic Doppler shift were

also considered. Incident photon properties were calculated with the REC calculator
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described in the previous section.

Adjustment of Simulation Parameters

Before any understanding could be gained from the simulation, the parameters in the

simulations have to be well adjusted so that the simulations resemble the experimental

geometry and detector response, which is ensured by comparing the simulated spectra

with the experimental ones.

Figure 5.9(a) shows the comparison between the spectra of the sum-energy of the

Compton scattered photon and the recoil electron, zoomed in to the K-REC peak posi-

tion, and figure 5.9(b) shows the distribution of the polar angle of the Compton events.

As can be seen, the simulations reproduce the features of the experimental data hence

can be used as orientation for data interpretation.

Figure 5.9: Comparison between the experimental and simulated Compton spectra: (a)
shows the sum of the photon and electron energy of the reconstructed Comp-
ton events; (b) shows the reconstructed polar scattering angle θ.

Normalization of Spatial Distribution of Compton-Scattered Photons

The geometrical artefact presented in figure 5.8 can be suppressed even further by nor-

malizing the experimental scattering pattern to a simulated pattern of a non-polarized

but otherwise identical incident radiation. As a result, the degree of linear polarization

retrieved from the normalized data is

PN
L = 0.926± 0.008, (5.13)
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with the reduced χ2 of 1.89, indicating that the model is more reliable, as can be seen

from figure 5.10. The fact that the obtained degree of polarization is nearly identical to

the one from equation (5.12) can be attributed to the cancellation of geometrical artefacts

as they lead to successive overshoots and undershoots of the intensity compared to the

model curve in figure 5.8.

Figure 5.10: Azimuthal distribution of Compton-scattered intensity normalized to the
distribution obtained by a Monte Carlo simulation for unpolarized but oth-
erwise identical incident radiation. Geometric artefacts are canceled to a
large extend, resulting in a better agreement of the experimental data and
the fitting curve with the degree of linear polarization as a free parameter.

Polarimeter Quality Factor

The quality factor of the polarimeter is another important information one can gain

from the simulations. By simulating incident radiation with various degrees of linear

polarization and process the data with same analysis routine, one obtains, as plotted in

figure 5.11, linear fit for the quality factor, which yields

Q = 0.974± 0.027. (5.14)

Here it is important to note, that the uncertainty of the quality factor is more than

three time larger than the statistical uncertainty of the experimental Compton spatial

distribution. This large uncertainty is due to the surprisingly large scattering of the

reconstructed polarization with respect to the incident polarization for the simulated
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data as shown in figure 5.11. Unfortunately, the simulation of one data point takes a

day or more on the simulation computer of our group, it was therefore not possible to

analyze this issue further during the time of this work. A much smaller uncertainty

of the polarimeter quality estimation should be reachable once the problem with the

current simulation is identified.

Figure 5.11: Calibration curve for polarimeter quality factor, obtained from simulation
of incident radiation with various degrees of linear polarization.

5.2.4 Comparison between Experimental Results and Theory

Combining the degree of linear polarization obtained from data normalization and the

quality factor of the polarimeter, the final results of the measured degree of linear po-

larization of K-shell REC is

PL =
PN
L

Q
= 0.950± 0.028. (5.15)

As mentioned above, the stated uncertainty is almost exclusively due to the lack of a

reliable polarimeter quality estimation, the improvement of which can be achieved by

either a more sophisticated model in the Monte Carlo simulation or (possibly) a series

of calibration measurements.

This result can be compared with the theoretical prediction of the rigorously calculated

RR polarization, or with weighted (by the doubly differential cross section) mean of the

polarization curve predicted by the REC calculator. As can be shown by table 5.1, the
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Projectile Experimental Value Theoretical value
REC RR

Xe54+ (150.5 MeV/u) 0.950(28) 0.9602 0.9655

Table 5.1: Comparison between the degrees of linear polarization obtained form from the
K-REC study and the theoretical values for RR/REC. The difference between
RR and REC is due to the fact that for REC one has to integrate over the
slightly energy-dependent degrees of polarization of the peak.

results from theory and experiments are, within the uncertainty of the experiment, in

agreement.

When compared with the previous results obtained with similar setups [17], the ex-

perimental uncertainty is improved by a factor of two to five thanks to the much better

position resolution offered by the 1024 pixels (compare with 16 pixels in [17]) of the Si(Li)

polarimeter. When compared with the preliminary results from the same measurement

by S. Hess [69], the correction of the observation angle and the quality factor (arguably)

lead to an improvement of the reliability of the result. Moreover, in the present work, it

was possible to take into account the full range of Compton events, while in the previous

analysis because of the lack of a proper normalization procedure the data was restricted

to a certain range of azimuth angles and distances from the scattering position.

With the analysis routines that were established (or at least improved compared to

[24]) in this work, a basis is set to rigorously analyze the data obtained in past experi-

ments with respect to the degree of linear polarization.
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6 Additional Experimental Work

Test Measurements of Radiation Yield at High-power

Laser Facilities

Besides the radiative electron capture (REC) process in relativistic ion-atom collisions

introduced in this thesis, hard X-rays can also arise from plasma interacting with high-

power lasers. Detailed study of angular distribution and polarization of laser-generated

hard X-ray is desirable and of physics importance. For example, it was recently shown

by M. Schnell et al. [82] that the linear polarization of the Betatron radiation emitted by

laser-accelerated electron bunches reveals subtle details of the directionality of the laser

wakefield dynamics. However, the crystal optics employed in the experimental setup [82]

allows polarization analysis only for a dedicated wavelength and for relatively low X-ray

energies. Moreover, a recent test experiment by C. Hahn et al. [83] using a Compton

polarimeter setup based on CdTe Timepix detectors [84] showed hints for a dependence

of hard X-ray polarization emitted from laser-heated plasma on the polarization of the

incident laser pulse .

One of the main problems for the implementation of active X-ray detectors (in contrast

to passive systems like image plates) at high-power laser environments is the high-flux

burst of radiation emitted shortly after the initial laser-matter interaction. In some cases

this radiation is also accompanied by powerful electromagnetic pulses (EMP), which can

do harm to the readout electronics and computer systems. In order to study these effects,

a few test experiments were carried out at two petawatt-class laser systems connected to

the Helmholtz-Institute Jena, namely, the POLARIS in Jena, and the PHELIX facility

at GSI Darmstadt. In the following I will briefly discuss the experimental setup and the

obtained results.

The detector system employed in these experiments consist of four bulks of BC-408

plastic scintillator with volume of 50× 11× 4 cm3 of each, coupled along the longest
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side via waveguides to EMI-9822B photomuliplier tubes (PMT), biased by a voltage of

-2000 V. The voltage signals of the PMTs were read out by a LeCroy wave runner Z66i

digital oscilloscope (at PHELIX) or a Tektronix MDO3000 series (at POlARIS). Both

oscilloscopes can offer sample rate of more than GS/s, which enables the identification of

the signal event even for very high radiation fluxes (the FWHM pulse width of a single

event is of the order of 10 ns for comparison).

In the measurement at PHELIX, 500 fs laser pulses with 120 J of energy were focused

down to spots with 20 µm in diameter, incident obliquely (72◦ with respect to target

normal) onto a millimeter-thick copper foil (see figure 6.1). Fast target surface electrons

(TSE) [85] with up to 10 MeV energy hit the secondary target of aluminium and emitted

Bremsstrahlung. The detector system, shield by about 5 cm thick lead, observed the

interaction region from 13 meters away backwards of the laser propagation direction.

This large distance was necessary to detect reasonable detector signals, because for

lower distances the oscilloscope, even though shielded by lead blocks and put into a

copper Faraday cage to reduce EMP, produced errors and stopped acquisition.

Figure 6.1: Schematic description of the experimental setup at PHELIX laser: 500 fs
pulses with 120 J of energy are focused down to spots with 20 µm in diameter,
incident obliquely (72◦ with respect to target normal) onto a millimeter thick
copper foil. Detectors are situated 13 meters from the interaction region,
shielded by lead blocks.

A typical waveform recorded by the oscilloscope is shown in figure 6.2, where signals

of the order of a few volts can be observed (an event caused by cosmic radiation is of the

order of 100 mV for comparison). The EMPs caused strong fluctuations of the baseline

signal of the PMTs, as a consequence, no isolated event can be identified within this

burst. However, by applying a peak finding algorithm to the signal after the initial one

microsecond, clear signature of activation was observed, as indicated by the exponential

decay of event rate shown in figure 6.3.
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Figure 6.2: A typical waveform recorded by the oscilloscope during the interaction of
PHELIX pulse with copper plasma. The volt-order EMP prohibits the iden-
tification of isolated events within about 1 µs after the laser-matter interac-
tion.

Figure 6.3: Laser-induced activation obtained at the PHELIX facility.

A similar measurement was later performed at POALRIS, where the effects of the

initial burst and EMPs were expected not to be vital because of the less energy (about

3.5 J) and less target material (filament consisting of a 50:50 volume mixture of D2 and

H2). However, as it turned out, there were still overshoots of PMT signal, which blinded

the detector for about 100 ns, as shown by figure 6.4. Due to the limited total shot

number during the experiment, a conclusion for the observation of neutron generation

from D-D fusion can not be drawn as expected.

At this point, we can conclude that the extremely high flux during the laser-matter

interaction can be monitored by the above mentioned simple setup; the oscilloscope read-

out is robust thanks to the shielding and high output of the PMTs. This radiation could
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Figure 6.4: Baseline signal distortion of the PMTs during the laser-H(D)2 filament in-
teraction at the POLARIS laser.

hamper the operation of large-volume active X-ray detectors like the Si(Li) polarimeter

introduced in subsection 4.2.1. More sophisticated setups have to be developed in order

to make use of such detectors.
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7 Summary and Outlook

Within the frame work of my master thesis, the radiative electron capture (REC) was

studied with emphasis on the polarization properties.

First, a fast REC calculator was developed, which facilitates the calculation for REC

angular differential cross section and degree of linear polarization for initially bare pro-

jectiles with kinetic energy between 5 MeV/u and 400 MeV/u. The interpolations of

radiative recombination properties performed by this fast calculator are, on the percent

level, in agreement with the exact fully relativistic calculations. With the extension of

the underlying RR database to 5 GeV/u, this Calculator can be used for the planning

and analysis of measurements at the HESR of the future FAIR facility. For example,

at the HESR the cross-over of the REC polarization degree to negative values could

be studied (c.f. figure 1.2). Moreover, when taking into account the shielding effects,

by using the successive ionization approximation and neglecting the electron-electron

correlation, the working domain of the calculator could be, in principle, extended to

initially hydrogen- or helium-like projectiles.

Second, the data of Xe54+ ions colliding with neutral hydrogen gas at 150.5 MeV/u

of energy, measured in 2008 using a 2D position sensitive Si(Li) detector, were analyzed

with a sophisticated analyzing routine, which yielded results in good agreement with the

currently available theory. The K-REC was found strongly polarized at the observation

angle near 90◦ in the laboratory frame, which leads to the potential of tunable polarized

hard X-ray source with energy (up to MeV) and degree of linear polarization tunability.

The experimental uncertainty arose mainly from the indefiniteness of the quality factor

(polarization sensitivity) of the polarimeter, which was estimated using a series of Monte

Carlo simulations each requiring a day or more of computation time. Limited by the

time frame of this work, a more reliable estimate was not obtained. However, I am

optimistic that once this last issue is solved, the present analysis routines can provide a

reliable basis for a rigorous final analysis of the available polarimetric data.

Last but not least, additional experimental work addressing the radiation yield arising
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from the interaction of high-power lasers with plasmas were performed using plastic

scintillators (coupled to PMTs) and a fast multi-channel oscilloscope. It was possible

to record the initial radiation burst and also subsequent events due to activation of the

experimental setup. The results indicate that the radiation flux in high-power laser

environment is much too high to use large-volume, high-stopping power X-ray detectors

like the 2D Si(Li) polarimeter.
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[44] T. Surić, Nucl. Instr. Meth. Phys. Res., Sect. A 314, 240 (1992).

[45] F. Coester, Phys. Rev. 84, 1259 (1951).

[46] P. Dirac, The principles of quantum mechanics, 4th edition (Oxford University

Press, Oxford, 1958).

[47] E. Spindler, H. D. Betz, and F. Bell, Phys. Rev. Lett. 42, 832 (1979).

[48] M. Stobbe, Ann. Phys. (Leipzig) (1930).

[49] A. Surzhykov, S. Fritzsche, and T. Stöhlker, Phys. Lett. A 289, 213 (2001).
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