When logged in, additional information is available in some parts of the website.

Peer-Review Publications


F. Karbstein, and E. A. Mosman
Photon polarization tensor in circularly polarized Hermite- and Laguerre-Gaussian beams
Modern Physics Letters A 33, 1850044 (2018)

Abstract: We derive analytical expressions for the photon polarization tensor in circularly polarized Hermite-Gaussian (HG) and Laguerre-Gaussian (LG) beams, complementing the corresponding results for linearly polarized beams obtained recently. As they are based upon a locally constant field approximation of the one-loop Heisenberg–Euler effective Lagrangian for quantum electrodynamics (QED) in constant fields, our results are generically limited to slowly varying electromagnetic fields, varying on spatial (temporal) scales much larger than the Compton wavelength (time) of the electron.

H. Gies, F. Karbstein, and C. Kohlfürst
All-optical signatures of strong-field QED in the vacuum emission picture
Physical Review D 97, 036022 (2018)

Abstract: We study all-optical signatures of the effective nonlinear couplings among electromagnetic fields in the quantum vacuum, using the collision of two focused high-intensity laser pulses as an example. The experimental signatures of quantum vacuum nonlinearities are encoded in signal photons, whose kinematic and polarization properties differ from the photons constituting the macroscopic laser fields. We implement an efficient numerical algorithm allowing for the theoretical investigation of such signatures in realistic field configurations accessible in experiment. This algorithm is based on a vacuum emission scheme and can readily be adapted to the collision of more laser beams or further involved field configurations. We solve the case of two colliding pulses in full 3+1-dimensional spacetime and identify experimental geometries and parameter regimes with improved signal-to-noise ratios.

U. Zastrau, C. Rödel, M. Nakatsutsumi, T. Feigl, K. Appel, B. Chen, T. Döppner, T. Fennel, T. Fiedler, L. B. Fletcher, E. Förster, E. Gamboa, D. O. Gericke, S. Göde, C. Grote-Fortmann, V. Hilbert, L. Kazak, T. Laarmann, H. J. Lee, P. Mabey, F. Martinez, K.-H. Meiwes-Broer, H. Pauer, M. Perske, A. Przystawik, S. Roling, S. Skruszewicz, M. Shihab, J. Tiggesbäumker, S. Toleikis, M. Wünsche, H. Zacharias, S. H. Glenzer, and G. Gregori
A sensitive EUV Schwarzschild microscope for plasma studies with sub-micrometer resolution
Review of Scientific Instruments 89, 023703 (2018)

Abstract: We present an extreme ultraviolet (EUV) microscope using a Schwarzschild objective which is optimized for single-shot sub-micrometer imaging of laser-plasma targets. The microscope has been designed and constructed for imaging the scattering from an EUV-heated solid-density hydrogen jet. Imaging of a cryogenic hydrogen target was demonstrated using single pulses of the free-electron laser in Hamburg (FLASH) free-electron laser at a wavelength of 13.5 nm. In a single exposure, we observe a hydrogen jet with ice fragments with a spatial resolution in the sub-micrometer range. In situ EUV imaging is expected to enable novel experimental capabilities for warm dense matter studies of micrometer-sized samples in laser-plasma experiments.

P. Hilz, T. M. Ostermayr, A. Huebl, V. Bagnoud, B. Borm, M. Bussmann, M. Gallei, J. Gebhard, D. Haffa, J. Hartmann, T. Kluge, F. H. Lindner, P. Neumayr, C. G. Schaefer, U. Schramm, P. G. Thirolf, T. .F. Rösch, F. Wagner, B. Zielbauer, and J. Schreiber
Isolated proton bunch acceleration by a petawatt laser pulse
Nature Communications 9, 423 (2018)

Abstract: Often, the interpretation of experiments concerning the manipulation of the energy distribution of laser-accelerated ion bunches is complicated by the multitude of competing dynamic processes simultaneously contributing to recorded ion signals. Here we demonstrate experimentally the acceleration of a clean proton bunch. This was achieved with a microscopic and three-dimensionally confined near critical density plasma, which evolves from a 1 µm diameter plastic sphere, which is levitated and positioned with micrometer precision in the focus of a Petawatt laser pulse. The emitted proton bunch is reproducibly observed with central energies between 20 and 40 MeV and narrow energy spread (down to 25%) showing almost no low-energetic background. Together with three-dimensional particle-in-cell simulations we track the complete acceleration process, evidencing the transition from organized acceleration to Coulomb repulsion. This reveals limitations of current high power lasers and viable paths to optimize laser-driven ion sources.

A. A. Bondarevskaya, D. V. Chubukov, E. A. Mistonova, K. N. Lyashchenko, O. Y. Andreev, A. Surzhykov, L. N. Labzowsky, G. Plunien, D. Liesen, F. Bosch, and Th. Stöhlker
Considerations towards the possibility of the observation of parity nonconservation in highly charged ions in storage rings
Physica Scripta 93, 025401 (2018)

Abstract: The feasibility of an experiment for the observation of parity nonconserving effects using He-like highly charged ions in storage rings is discussed theoretically. The basic idea is the observation of an asymmetry in the emission of the hyperfine quenched transition (1s2s)¹{S₀\to (1s)²¹S₀+γ } with respect to the direction of a beam of ions with polarized nuclei. It will be shown, that for such an experiment 151Eu^61+ ions with nuclear spin I=5/2 in the excited electronic state (1s2s)¹S₀ with zero total electron angular momentum and polarized nuclei are the best available candidates. The nuclei can be polarized if H-like Eu^62+ ions capture an electron from a polarized electron beam which overlays the ion beam on some part of the ring and travels with nearly the same velocity. It is suggested, to monitor steadily the degree of the nuclear polarization by the observation of the selective laser excitation and subsequent decay of the Zeeman sublevels of the excited hyperfine states of the ionic ground state. Estimates for the observation time aiming at an accuracy of PNC measurement of about 0.1 % are given.


C. Leithold, J. Reislöhner, H. Gies, and A. N. Pfeiffer
Characterization of two ultrashort laser pulses using interferometric imaging of self-diffraction
Optics Letters 42, 5246 (2017)

Abstract: Noncollinear pulse characterization methods can be applied to over-octave spanning waveforms, but geometrical effects in the nonlinear medium such as beam smearing and critical sensitivity to beam alignment hinder their accurate application. Here, a method is introduced for the temporal and spatial characterization of two pulses by interferometric, spectrally resolved imaging of self-diffraction. Geometrical effects are resolved by the method and, therefore, do not limit the accuracy. Two methods for quantitative pulse retrieval are presented. One method is analytical and very fast; the other method is iterative and more robust if applied to noisy data.

Y. Zhang, P. Kellner, D. Adolph, D. Zille, P. Wustelt, D. Würzler, S. Skruszewicz, M. Möller, A. M. Sayler, and G. G. Paulus
Single-shot, real-time carrier-envelope phase measurement and tagging based on stereographic above-threshold ionization at short-wave infrared wavelengths
Optics Letters 42, 5150 (2017)

Abstract: A high-precision, single-shot, and real-time carrier-envelope phase (CEP) measurement at 1.8 μm laser wavelength based on stereographic photoelectron spectroscopy is presented. A precision of the CEP measurement of 120 mrad for each and every individual laser shot for a 1 kHz pulse train with randomly varying CEP is demonstrated. Simultaneous to the CEP measurement, the pulse lengths are characterized by evaluating the spatial asymmetry of the measured above-threshold ionization (ATI) spectra of xenon and referenced to a standard pulse-duration measurement based on frequency-resolved optical gating. The validity of the CEP measurement is confirmed by implementing phase tagging for a CEP-dependent measurement of ATI in xenon with high energy resolution.

J. S. M. Ginges, A. V. Volotka, and S. Fritzsche
Ground-state hyperfine splitting for Rb, Cs, Fr, Ba⁺, and Ra⁺
Phyical Review A 96, 062502 (2017)

Abstract: We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb, 33Cs, and 211Fr and alkali-metal-like ions 135Ba^+ and 225Ra^+, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.

F. Karbstein, and E. A. Mosman
Photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian beams
Physical Review D 96, 116004 (2017)

Abstract: In this article, we provide analytical expressions for the photon polarization tensor in pulsed Hermite- and Laguerre-Gaussian laser beams. Our results are based on a locally constant field approximation of the one-loop Heisenberg-Euler effective Lagrangian for quantum electrodynamics. Hence, by construction they are limited to slowly varying electromagnetic fields, varying on spatial and temporal scales significantly larger than the Compton wavelength/time of the electron. The latter criterion is fulfilled by all laser beams currently available in the laboratory. Our findings will, e.g., be relevant for the study of vacuum birefringence experienced by probe photons brought into collision with a high-intensity laser pulse which can be represented as a superposition of either Hermite- or Laguerre-Gaussian modes.

M. Wiesel, G. Birkl, M. S. Ebrahimi, A. Martin, W. Quint, N. Stallkamp, and M. Vogel
Optically transparent solid electrodes for precision Penning traps
Review of Scientific Instruments 88, 123101 (2017)

Abstract: We have conceived, built, and operated a cryogenic Penning trap with an electrically conducting yet optically transparent solid electrode. The trap, dedicated to spectroscopy and imaging of confined particles under large solid angles, is of “half-open” design with one open endcap and one closed endcap that mainly consists of a glass window coated with a highly transparent conductive layer. This arrangement allows for the trapping of externally or internally produced particles and yields flexible access for optical excitation and efficient light collection from the trapping region. At the same time, it is electrically closed and ensures long-term ion confinement under well-defined conditions. With its superior surface quality and its high as well as homogeneous optical transmission, the window electrode is an excellent replacement for partially transmissive electrodes that use holes, slits, metallic meshes, and the like.

J. W. Wang, C. B. Schroeder, R. Li, M. Zepf, and S. G. Rykovanov
Plasma channel undulator excited by high-order laser modes
Scientific Reports 7, 16884 (2017)

Abstract: The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of a mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3\^aEUR%0kA level, making such an undulator a potential candidate towards a table-top FEL.

R. Hollinger, Z. Samsonova, D. Gupta, C. Spielmann, R. Röder, L. Trefflich, C. Ronning, and D. Kartashov
Enhanced absorption and cavity effects of three-photon pumped ZnO nanowires
Applied Physics Letters 111, 213106 (2017)

Abstract: Semiconductor nanowire (NW) lasers attract a lot of attention as potential elements of nanophotonic circuits and lab-on-a chip devices. Here, we report on the experimental investigation of stimulated near ultraviolet (NUV) emission, pumped by three-photon absorption from near infrared femtosecond laser pulses, from ZnO NW arrays of different morphologies and compare it to the bulk. The spectrally and temporally resolved measurements of the NUV emission show both strong enhancements in the absorption and emission properties of the nanowire arrays compared to bulk samples. Thus, we determine a many times higher three-photon absorption in the nanostructure morphology compared to the bulk material. Furthermore, the threshold pumping intensity for stimulated emission in a vertically oriented nanowire array is twice lower and the emission onset time is shorter than in randomly oriented arrays, revealing strong influence of the macroscopic nanowire arrangement.

D. Hoff, M. Krüger, L. Maisenbacher, G. Paulus, P. Hommelhoff, and A. Sayler
Using the focal phase to control attosecond processes
Journal of Optics 19, 124007 (2017)

Abstract: The spatial evolution of the electric field of focused broadband light is crucial for many emerging attosecond technologies. Here the effects of the input beam parameters on the evolution of few-cycle laser pulses in the focus are discussed. Specifically, we detail how the frequency-dependent input beam geometry, chirp and chromatic aberration can affect the spatial dependence of the carrier-envelope phase (CEP), central frequency and pulse duration in the focus. These effects are confirmed by a direct, three-dimensional measurement of the CEP-evolution in the focus of a typical few-cycle pulse laser using electron rescattering at metal nanotips in combination with a CEP-metre. Moreover, we demonstrate a simple measurement technique to estimate the focal CEP evolution by input-beam parameters. These parameters can be used in novel ways in order to control attosecond dynamics and tailor highly nonlinear light–matter interactions.

D. Würzler, N. Eicke, M. Möller, D. Seipt, A. M. Sayler, S. Fritzsche, M. Lein, and G. G. Paulus
Velocity map imaging of scattering dynamics in orthogonal two-color fields
Journal of Physics B: Atomic, Molecular and Optical Physics 51, 015001 (2017)

Abstract: In strong-field ionization processes, two-color laser fields are frequently used for controlling sub-cycle electron dynamics via the relative phase of the laser fields. Here we apply this technique to velocity map imaging spectroscopy using an unconventional orientation with the polarization of the ionizing laser field perpendicular to the detector surface and the steering field parallel to it. This geometry allows not only to image the phase-dependent photoelectron momentum distribution (PMD) of low-energy electrons that interact only weakly with the ion (direct electrons), but also to investigate the low yield of higher-energy rescattered electrons. Phase-dependent measurements of the PMD of neon and xenon demonstrate control over direct and rescattered electrons. The results are compared with semi-classical calculations in three dimensions including elastic scattering at different orders of return and with solutions of the three-dimensional time-dependent Schrödinger equation.

A. J. Miller, K. Minamisono, D. M. Rossi, R. Beerwerth, B. A. Brown, S. Fritzsche, D. Garand, A. Klose, Y. Liu, B. Maaß, P. F. Mantica, P. Müller, W. Nörtershäuser, M. R. Pearson, and C. Sumithrarachchi
First determination of ground state electromagnetic moments of ⁵³Fe
Physical Review C 96, 054314 (2017)

Abstract: The hyperfine coupling constants of neutron deficient 53Fe were deduced from the atomic hyperfine spectrum of the 3d^6 4s^2 ^5D_4 <-> 3d^6 4s 4p ^5F_5 transition, measured using the bunched-beam collinear laser spectroscopy technique. The low-energy 53Fe beam was produced by projectile-fragmentation reactions followed by gas stopping, and used for the first time for laser spectroscopy. Ground state magnetic-dipole and electric-quadrupole moments were determined as μ = -0.65(1)μ_N and Q = +35(15)e^2 fm^2, respectively. The multiconfiguration Dirac-Fock method was used to calculate the electric field gradient to deduce Q from the quadrupole hyperfine coupling constant, since the quadrupole coupling constant has not been determined for any Fe isotopes. Both experimental values agree well with nuclear shell model calculations using the GXPF1A effective interaction performed in a full fp shell model space, which support the soft nature of the 56Ni nucleus.

C. Granados, P. Creemers, R. Ferrer, L. P. Gaffney, W. Gins, R. de Groote, M. Huyse, Yu. Kudryavtsev, Y. Martínez, S. Raeder, S. Sels, C. Van Beveren, P. Van den Bergh, P. Van Duppen, K. Wrzosek-Lipska, A. Zadvornaya, A. E. Barzakh, B. Bastin, P. Delahaye, L. Hijazi, N. Lecesne, F. Luton, J. Piot, H. Savajols, J.-C. Thomas, E. Traykov, R. Beerwerth, S. Fritzsche, M. Block, X. Fléchard, S. Franchoo, L. Ghys, H. Grawe, R. Heinke, T. Kron, P. Naubereit, K. Wendt, M. Laatiaoui, I. Moore, V. Sonnenschein, M. Loiselet, E. Mogilevskiy, and S. Rothe
In-gas laser ionization and spectroscopy of actinium isotopes near the N=126 closed shell
Physical Review C 96, 054331 (2017)

Abstract: The in-gas laser ionization and spectroscopy (IGLIS) technique was applied on the 212-215Ac isotopes, produced at the Leuven Isotope Separator On-Line (LISOL) facility by using the in-gas-cell and the in-gas-jet methods. The first application under on-line conditions of the in-gas-jet laser spectroscopy method showed a superior performance in terms of selectivity, spectral resolution, and efficiency in comparison with the in-gas-cell method. Following the analysis of both experiments, the magnetic-dipole moments for the 212-215Ac isotopes, electric-quadrupole moments and nuclear spins for the 214,215Ac isotopes are presented and discussed. A good agreement is obtained with large-scale nuclear shell-model calculations by using a 208Pb core.

H. Gies, R. Sondenheimer, and M. Warschinke
Impact of generalized Yukawa interactions on the lower Higgs-mass bound
The European Physical Journal C 77, 743 (2017)

Abstract: We investigate the impact of operators of higher canonical dimension on the lower Higgs-mass consistency bound by means of generalized Higgs--Yukawa interactions. Analogously to higher-order operators in the bare Higgs potential in an effective field theory approach, the inclusion of higher-order Yukawa interactions, e.g., ϕ^3ψ^¯ψ, leads to a diminishing of the lower Higgs-mass bound and thus to a shift of the scale of new physics towards larger scales by a few orders of magnitude without introducing a metastability in the effective Higgs potential. We observe that similar renormalization group mechanisms near the weak-coupling fixed point are at work in both generalizations of the microscopic action. Thus, a combination of higher-dimensional operators with generalized Higgs as well as Yukawa interactions does not lead to an additive shift of the lower mass bound, but it relaxes the consistency bounds found recently only slightly. On the method side, we clarify the convergence properties of different projection and expansion schemes for the Yukawa potential used in the functional renormalization group literature so far.

F. Karbstein
Tadpole diagrams in constant electromagnetic fields
Journal of High Energy Physics 2017, 75 (2017)

Abstract: We show how all possible one-particle reducible tadpole diagrams in constant electromagnetic fields can be constructed from one-particle irreducible constant-field diagrams. The construction procedure is essentially algebraic and involves differentiations of the latter class of diagrams with respect to the field strength tensor and contractions with derivatives of the one-particle irreducible part of the Heisenberg-Euler effective Lagrangian in constant fields. Specific examples include the two-loop addendum to the Heisenberg-Euler effective action as well as a novel one-loop correction to the charged particle propagator in constant electromagnetic fields discovered recently. As an additional example, the approach devised in the present article is adopted to derive the tadpole contribution to the two-loop photon polarization tensor in constant fields for the first time.

I. Maltsev, V. Shabaev, I. Tupitsyn, Y. Kozhedub, G. Plunien, and Th. Stöhlker
Pair production in low-energy collisions of uranium nuclei beyond the monopole approximation
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 97 (2017)

Abstract: A method for calculation of electron-positron pair production in low-energy heavy-ion collisions beyond the monopole approximation is presented. The method is based on the numerical solving of the time-dependent Dirac equation with the full two-center potential. The one-electron wave functions are expanded in the finite basis set constructed on the two-dimensional spatial grid. Employing the developed approach the probabilities of bound-free pair production are calculated for collisions of bare uranium nuclei at the energy near the Coulomb barrier. The obtained results are compared with the corresponding values calculated in the monopole approximation.

Y. Kozhedub, A. Bondarev, X. Cai, A. Gumberidze, S. Hagmann, C. Kozhuharov, I. Maltsev, G. Plunien, V. Shabaev, C. Shao, Th. Stöhlker, I. Tupitsyn, B. Yang, and D. Yu
Intensities of K-X-ray satellite and hypersatellite target radiation in Bi83+-Xe @70MeV/u collisions
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 31 (2017)

Abstract: Non-perturbative calculations of the relativistic quantum dynamics of electrons in the Bi83+-Xe collisions at 70 AMeV are performed. A method of calculation employs an independent particle model with effective single-electron Dirac-Kohn-Sham operator. Solving of the single-electron equations is based on the coupled-channel approach with atomic-like Dirac-Sturm-Fock orbitals, localized at the ions (atoms). Special attention is paid to the inner-shell processes. Intensities of the K satellite and hypersatellite target radiation are evaluated. The role of the relativistic effects is studied.

A. Gumberidze, C. Kozhuharov, R. Zhang, S. Trotsenko, Y. Kozhedub, R. DuBois, H. Beyer, K.-H. Blumenhagen, C. Brandau, A. Bräuning-Demian, W. Chen, O. Forstner, B. Gao, T. Gassner, R. Grisenti, S. Hagmann, P.-M. Hillenbrand, P. Indelicato, A. Kumar, M. Lestinsky, Yu. A. Litvinov, N. Petridis, D. Schury, U. Spillmann, C. Trageser, M. Trassinelli, X. Tu, and Th. Stöhlker
Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 27 (2017)

Abstract: In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35–70 fm.

D. Glazov, A. Malyshev, A. Volotka, V. Shabaev, I. Tupitsyn, and G. Plunien
Higher-order perturbative relativistic calculations for few-electron atoms and ions
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 46 (2017)

Abstract: An effective computational method is developed for electronic-structure calculations in few-electron atoms and ions on the basis of the Dirac-Coulomb-Breit Hamiltonian. The recursive formulation of the perturbation theory provides an efficient access to the higher-order contributions of the interelectronic interaction. Application of the presented approach to the binding energies of lithiumlike and boronlike systems is demonstrated. The results obtained are in agreement with the large-scale configuration interaction Dirac-Fock-Sturm method and other all-order calculations.

V. Agababaev, A. Volchkova, A. Varentsova, D. Glazov, A. Volotka, V. Shabaev, and G. Plunien
Quadratic Zeeman effect in boronlike argon
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 70 (2017)

Abstract: Abstract A theoretical investigation of the second-order Zeeman effect in boronlike ions is presented. Rigorous calculations of the one-photon-exchange and one-loop QED corrections allow for predictions of the corresponding theoretical values for boronlike argon with an accuracy of about 2%. The obtained results are important in view of the forthcoming measurements of the Zeeman splitting in 40Ar13+ at GSI (ARTEMIS experiment).

A. Varentsova, V. Agababaev, A. Volchkova, D. Glazov, A. Volotka, V. Shabaev, and G. Plunien
Third-order Zeeman effect in highly charged ions
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 80 (2017)

Abstract: The contribution of the third order in magnetic field to the Zeeman splitting of the ground state of hydrogenlike, lithiumlike, and boronlike ions in the range Z=6-82 is investigated within the relativistic approach. Both perturbative and non-perturbative methods of calculation are employed and found to be in agreement. For lithiumlike and boronlike ions the interelectronic-interaction effects are taken into account within the approximation of the local screening potential. The contribution of the third-order effect in low- and medium-Z boronlike ions is found to be important for anticipated high-precision measurements.

R. Müller, A. Volotka, S. Fritzsche, and A. Surzhykov
Theoretical analysis of the electron bridge process in 229Th3+
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 84 (2017)

Abstract: We investigate the deexcitation of the 229Th nucleus via the excitation of an electron. Detailed calculations are performed for the enhancement of the nuclear decay width due to the so called electron bridge (EB) compared to the direct photoemission from the nucleus. The results are obtained for triply ionized thorium by using a B-spline pseudo basis approach to solve the Dirac equation for a local xα potential. This approach allows for an approximation of the full electron propagator including the positive and negative continuum. We show that the contribution of continua slightly increases the enhancement compared to a propagator calculated by a direct summation over bound states. Moreover we put special emphasis on the interference between the direct and exchange Feynman diagrams that can have a strong influence on the enhancement.

A. Volchkova, A. Varentsova, N. Zubova, V. Agababaev, D. Glazov, A. Volotka, V. Shabaev, and G. Plunien
Nuclear magnetic shielding in boronlike ions
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 89 (2017)

Abstract: The relativistic treatment of the nuclear magnetic shielding effect in boronlike ions is presented. The leading-order contribution of the magnetic-dipole hyperfine interaction is calculated. Along with the standard second-order perturbation theory expression, the solutions of the Dirac equation in the presence of magnetic field are employed. All methods are found to be in agreement with each other and with the previous calculations for hydrogenlike and lithiumlike ions. The effective screening potential is used to account approximately for the interelectronic interaction.

A. Malyshev, D. Glazov, A. Volotka, I. Tupitsyn, V. Shabaev, and G. Plunien
Binding energies of the 1s2 2s2 2pj states in boronlike argon
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 103 (2017)

Abstract: The binding energies of the ground 1s2 2s2 2p1/2 and first excited 1s2 2s2 2p3/2 states in boronlike argon are rigorously evaluated. The calculations are performed by the QED perturbation theory in the framework of the extended Furry picture taking into account all the relevant first- and second-order radiative and correlation corrections. The third- and higher-order interelectronic-interaction effects are considered within the Breit approximation. The relativistic nuclear recoil effect is taken into account. In comparison with the previous calculations of the binding energies in boronlike argon the accuracy of the theoretical predictions has been significantly improved.

J. Hofbrucker, A. Volotka, and S. Fritzsche
Relativistic effects in the non-resonant two-photon K-shell ionization of neutral atoms
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 125 (2017)

Abstract: Relativistic effects in the non-resonant two-photon K-shell ionization of neutral atoms are studied theoretically within the framework of second-order perturbation theory. The non-relativistic results are compared with the relativistic calculations in the dipole and no-pair approximations as well as with the complete relativistic approach. The calculations are performed in both velocity and length gauges. Our results show a significant decrease of the total cross section for heavy atoms as compared to the non-relativistic treatment, which is mainly due to the relativistic wavefunction contraction. The effects of higher multipoles and negative continuum energy states counteract the relativistic contraction contribution, but are generally much weaker. While the effects beyond the dipole approximation are equally important in both gauges, the inclusion of negative continuum energy states visibly contributes to the total cross section only in the velocity gauge.

Z. Wu, A. Volotka, C. Dong, and S. Fritzsche
Dielectronic recombination of highly charged ions with spin-polarized electrons
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 130 (2017)

Abstract: Angular distribution and linear polarization of photon emission following dielectronic recombination of initially lithium-like ions with spin-polarized electrons are studied. In particular, a general expression is derived for the alignment parameter of the doubly excited states produced via the resonant capture of spin-polarized electrons. By means of the alignment parameter, moreover, the angular distribution and linear polarization of the subsequently emitted photons are further obtained. Detailed computations are performed for the 1s2 2s J0=1/2+εe-→1s2s2 2p1/2 J=1→1s2 2s2 Jf=0+γ resonant electron capture and subsequent radiative decay of iodine ions. It is found that the spin polarization of the incident electrons changes only the q=±1 components of the alignment parameter A2q. As a consequence, the electron spin polarization contributes weakly to the γ photon angular distribution and linear polarization that are dominantly determined by the A20 parameter.

V. Zaytsev, S. Fritzsche, A. Surzhykov, and V. Shabaev
Hyperfine induced effects on the angular distribution of the dielectronic hypersatellite line
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 93 (2017)

Abstract: Abstract We investigate the dielectronic recombination (DR) of an electron and a highly-charged ion with non-zero nuclear spin. We assume that the incident electron is captured into doubly-excited 1s2κκ′J=0,1,2 levels of Be-like ions just above of its autoionization threshold. The angular distribution of the subsequent radiative emission is investigated especially for its dependence upon the nuclear spin and the nuclear magnetic moment. While the hyperfine and even the fine-structure of the ions cannot be resolved in typical DR experiments, we found the photon angular distribution, following the decay of the 1s2 2p3/2nsJ=1,2 DR resonance very sensitive to the nuclear parameters.

M. Gebhardt, C. Gaida, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schulzgen, R. Amezcua-Correa, J. Limpert, and A. Tünnermann
Nonlinear pulse compression to 43  W GW-class few-cycle pulses at 2  μm wavelength
Optics Letters 42, 4179 (2017)

Abstract: High-average power laser sources delivering intense few-cycle pulses in wavelength regions beyond the near infrared are promising tools for driving the next generation of high-flux strong-field experiments. In this work, we report on nonlinear pulse compression to 34.4 μJ-, 2.1-cycle pulses with 1.4 GW peak power at a central wavelength of 1.82 μm and an average power of 43 W. This performance level was enabled by the combination of a high-repetition-rate ultrafast thulium-doped fiber laser system and a gas-filled antiresonant hollow-core fiber.

J. Buldt, M. Müller, R. Klas, T. Eidam, J. Limpert, and A. Tünnermann
Temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra
Optics Letters 42, 3761 (2017)

Abstract: We present a novel approach for temporal contrast enhancement of energetic laser pulses by filtered self-phase-modulation-broadened spectra. A measured temporal contrast enhancement by at least seven orders of magnitude in a simple setup has been achieved. This technique is applicable to a wide range of laser parameters and poses a highly efficient alternative to existing contrast-enhancement methods.

B. Böning, W. Paufler, and S. Fritzsche
Attosecond streaking with twisted X waves and intense infrared pulses
Phyical Review A 96, 043423 (2017)

Abstract: We investigate the photoionization of atoms by attosecond X waves carrying orbital angular momentum in the presence of a strong, linearly polarized, near infrared (NIR) laser pulse. In the plane-wave case, the streaking of photoelectrons by the NIR pulse has been used to characterize the ionizing pulse. In contrast to plane-wave pulses, X waves have a spatially dependent temporal profile, which modifies the ionization process. Here we explore theoretically the influence of this complex pulse structure on the streaking of photoelectrons for both localized and macroscopically extended targets. On the basis of the strong-field approximation, we find that the streaking spectra of localized targets sensitively depend on the opening angle of the X wave and the position of the atomic target relative to the beam axis. For macroscopically extended targets, we find that the streaking spectra do not depend on the parameters characterizing the twist of the X wave.

M. Kübel, Z. Dube, A. Yu. Naumov, M. Spanner, G. G. Paulus, M. F. Kling, D. M. Villeneuve, P. B. Corkum, and A. Staudte
Streak Camera for Strong-Field Ionization
Physical Review Letters 119, 183201 (2017)

Abstract: Ionization of an atom or molecule by a strong laser field produces suboptical cycle wave packets whose control has given rise to attosecond science. The final states of the wave packets depend on ionization and deflection by the laser field, which are convoluted in conventional experiments. Here, we demonstrate a technique enabling efficient electron deflection, separate from the field driving strong-field ionization. Using a midinfrared deflection field permits one to distinguish electron wave packets generated at different field maxima of an intense few-cycle visible laser pulse. We utilize this capability to trace the scattering of low-energy electrons driven by the midinfrared field. Our approach represents a general technique for studying and controlling strong-field ionization dynamics on the attosecond time scale.

G. Sarri, J. Warwick, W. Schumaker, K. Poder, J. Cole, D. Doria, T. Dzelzainis, K. Krushelnick, S. Kuschel, S. P. D. Mangles, Z. Najmudin, L. Romagnani, G. M. Samarin, D. Symes, A. G. R. Thomas, M. Yeung, and M. Zepf
Spectral and spatial characterisation of laser-driven positron beams
Plasma Physics and Controlled Fusion 59, 014015 (2017)

Abstract: The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. The results obtained indicate that current technology allows to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.

S. Schippers, M. Martins, R. Beerwerth, S. Bari, K. Holste, K. Schubert, J. Viefhaus, D. W. Savin, S. Fritzsche, and A. Müller
Near L-edge Single and Multiple Photoionization of Singly Charged Iron Ions
The Astrophysical Journal 849, 5 (2017)

Abstract: Absolute cross-sections for m -fold photoionization (m=1, ... , 6 ) of Fe+ by a single photon were measured employing the photon–ion merged-beams setup PIPE at the PETRA III synchrotron light source, operated by DESY in Hamburg, Germany. Photon energies were in the range 680–920 eV, which covers the photoionization resonances associated with 2p and 2s excitation to higher atomic shells as well as the thresholds for 2p and 2s ionization. The corresponding resonance positions were measured with an uncertainty of ±0.2 eV. The cross-section for Fe+ photoabsorption is derived as the sum of the individually measured cross-sections for m -fold ionization. Calculations of the Fe+ absorption cross-sections were carried out using two different theoretical approaches, Hartree–Fock including relativistic extensions and fully relativistic multiconfiguration Dirac–Fock. Apart from overall energy shifts of up to about 3 eV, the theoretical cross-sections are in good agreement with each other and with the experimental results. In addition, the complex de-excitation cascades after the creation of inner-shell holes in the Fe+ ion were tracked on the atomic fine-structure level. The corresponding theoretical results for the product charge-state distributions are in much better agreement with the experimental data than previously published configuration-average results. The present experimental and theoretical results are valuable for opacity calculations and are expected to pave the way to a more accurate determination of the iron abundance in the interstellar medium.

R. Beerwerth, and S. Fritzsche
MCDF calculations of Auger cascade processes
The European Physical Journal D 71, 253 (2017)

Abstract: We model the multiple ionization of near-neutral core-excited atoms where a cascade of Auger processes leads to the emission of several electrons. We utilize the multiconfiguration Dirac-Fock (MCDF) method to generate approximate wave functions for all fine-structure levels and to account for all decays between them. This approach allows to compute electron spectra, the population of final-states and ion yields, that are accessible in many experiments. Furthermore, our approach is based on the configuration interaction method. A careful treatment of correlation between electronic configurations enables one to model three-electron processes such as an Auger decay that is accompanied by an additional shake-up transition. Here, this model is applied to the triple ionization of atomic cadmium, where we show that the decay of inner-shell 4p holes to triply-charged final states is purely due to the shake-up transition of valence 5s electrons.

J. Deprince, S. Fritzsche, T. Kallman, P. Palmeri, and P. Quinet
Influence of plasma environment on K-line emission in highly ionized iron atoms evaluated using a Debye–Hückel model
Canadian Journal of Physics 95, 858 (2017)

Abstract: The influence of plasma environment on the atomic parameters associated with the K-vacancy states has been investigated theoretically for several iron ions. To do this, a time-averaged Debye–Hückel potential for both the electron–nucleus and electron–electron interactions has been considered in the framework of relativistic multiconfiguration Dirac–Fock computations. More particularly, the plasma screening effects on ionization potentials, K-thresholds, transition energies, and radiative rates have been estimated in the astrophysical context of accretion disks around black holes. In the present paper, we describe the behaviour of those atomic parameters for Ne-, Na-, Ar-, and K-like iron ions.

F. Siek, S. Neb, P. Bartz, M. Hensen, C. Strüber, S. Fiechter, M. Torrent-Sucarrat, V. Silkin, E. Krasovskii, N. Kabachnik, S. Fritzsche, R. Muiño, P. Echenique, A. Kazansky, N. Müller, W. Pfeiffer, and U. Heinzmann
Angular momentum–induced delays in solid-state photoemission enhanced by intra-atomic interactions
Science 357, 1274 (2017)

Abstract: Attosecond time-resolved photoemission spectroscopy reveals that photoemission from solids is not yet fully understood. The relative emission delays between four photoemission channels measured for the van der Waals crystal tungsten diselenide (WSe2) can only be explained by accounting for both propagation and intra-atomic delays. The intra-atomic delay depends on the angular momentum of the initial localized state and is determined by intra-atomic interactions. For the studied case of WSe2, the photoemission events are time ordered with rising initial-state angular momentum. Including intra-atomic electron-electron interaction and angular momentum of the initial localized state yields excellent agreement between theory and experiment. This has required a revision of existing models for solid-state photoemission, and thus, attosecond time-resolved photoemission from solids provides important benchmarks for improved future photoemission models.

D. Khaghani, M. Lobet, B. Borm, L. Burr, F. Gärtner, L. Gremillet, L. Movsesyan, O. Rosmej, M. Toimil-Molares, F. Wagner, and P. Neumayer
Enhancing laser-driven proton acceleration by using micro-pillar arrays at high drive energy
Scientific Reports 7, 11366 (2017)

Abstract: The interaction of micro- and nano-structured target surfaces with high-power laser pulses is being widely investigated for its unprecedented absorption efficiency. We have developed vertically aligned metallic micro-pillar arrays for laser-driven proton acceleration experiments. We demonstrate that such targets help strengthen interaction mechanisms when irradiated with high-energy-class laser pulses of intensities ~10^17–18 W/cm2. In comparison with standard planar targets, we witness strongly enhanced hot-electron production and proton acceleration both in terms of maximum energies and particle numbers. Supporting our experimental results, two-dimensional particle-in-cell simulations show an increase in laser energy conversion into hot electrons, leading to stronger acceleration fields. This opens a window of opportunity for further improvements of laser-driven ion acceleration systems.

G. M. Samarin, M. Zepf, and G. Sarri
Radiation reaction studies in an all-optical set-up: experimental limitations
Journal of Modern Optics 64, 2281 (2017)

Abstract: The recent development of ultra-high intensity laser facilities is finally opening up the possibility of studying high-field quantum electrodynamics in the laboratory. Arguably, one of the central phenomena in this area is that of quantum radiation reaction experienced by an ultra-relativistic electron beam as it propagates through the tight focus of a laser beam. In this paper, we discuss the major experimental challenges that are to be faced in order to extract meaningful and quantitative information from this class of experiments using existing and near-term laser facilities.

M. Bilal, R. Beerwerth, A. V. Volotka, and S. Fritzsche
Ab initio calculations of energy levels, transition rates and lifetimes in Ni xii
Monthly Notices of the Royal Astronomical Society 469, 4620 (2017)

Abstract: We report large-scale multi-configuration Dirac–Hartree–Fock calculations and relativistic configuration interaction calculations for allowed E1 and forbidden transitions (M1, E2, M2) among the fine structure levels of the 3s^2 3p^5, 3s 3p^6 and 3s^2 3p^4 3d configurations for Ni xii. In our systematically enlarged wave functions, we incorporated the effects of relativity, all important electron correlations and rearrangement of the bound electron density within two different computational models. We compare our calculated energies for the fine structure levels with previous calculations and experiments. We validate all the tentative experimental lines recently identified by Del Zanna & Badnell with one exception. We discuss the consistency of our transition rates in comparison to semi-empirical predictions. We present ab initio lifetime values by taking into account all allowed E1 and forbidden transitions (M1, E2, M2) rates among lowest 31 levels. Our results for lifetime values are better than previously reported ab initio and semi-empirical values as compared to available experiments, thus, providing reliable predictions in the prospects of future experiments.

S. Fuchs, M. Wünsche, J. Nathanael, J. J. Abel, C. Rödel, J. Biedermann, J. Reinhard, U. Hübner, and G. G. Paulus
Optical coherence tomography with nanoscale axial resolution using a laser-driven high-harmonic source
Optica 4, 903 (2017)

Abstract: Extreme ultraviolet microscopy is technologically demanding and thus largely confined to synchrotron radiation facilities. However, specific benefits like high resolution and exceptional material contrast provide strong motivation for the development of table-top alternatives. We report on the first demonstration of coherence tomography, i.e., noninvasive cross-sectional imaging, with high harmonics. A depth resolution of 24 nm and very good material contrast are achieved. Excessively demanding optics for extreme ultraviolet radiation are avoided and artifacts due to the elementary geometry are suppressed with a novel three-step one-dimensional phase-retrieval algorithm. The images are recorded in reflection geometry, facilitating the analysis of, e.g., operating semiconductor samples.

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff
Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface
Optics Express 25, 19195 (2017)

Abstract: We report on a theoretical and experimental study of the energy transfer between an optical evanescent wave, propagating in vacuum along the planar boundary of a dielectric material, and a beam of sub-relativistic electrons. The evanescent wave is excited via total internal reflection in the dielectric by an infrared (λ = 2 μm) femtosecond laser pulse. By matching the electron propagation velocity to the phase velocity of the evanescent wave, energy modulation of the electron beam is achieved. A maximum energy gain of 800 eV is observed, corresponding to the absorption of more than 1000 photons by one electron. The maximum observed acceleration gradient is 19 ± 2 MeV/m. The striking advantage of this scheme is that a structuring of the acceleration element’s surface is not required, enabling the use of materials with high laser damage thresholds that are difficult to nano-structure, such as SiC, Al2O3 or CaF2.

A. V. Malyshev, D. A. Glazov, A. V. Volotka, I. I. Tupitsyn, V. M. Shabaev, G. Plunien, and Th. Stöhlker
Ground-state ionization energies of boronlike ions
Phyical Review A 96, 022512 (2017)

Abstract: High-precision QED calculations of ground-state ionization energies are performed for all boronlike ions with nuclear charge numbers in the range 16≤Z≤96. Rigorous QED calculations are performed within the extended Furry picture and include all many-electron QED effects up to the second order of the perturbation theory. The contributions of third- and higher-order electron-correlation effects are accounted for within the Breit approximation. Nuclear recoil and nuclear polarization effects are taken into account as well. In comparison with previous evaluations of the ground-state ionization energies of boronlike ions the accuracy of the theoretical predictions is improved significantly.

A. A. Peshkov, D. Seipt, A. Surzhykov, and S. Fritzsche
Photoexcitation of atoms by Laguerre-Gaussian beams
Phyical Review A 96, 023407 (2017)

Abstract: In a recent experiment, Schmiegelow et al. [Nat. Commun. 7, 12998 (2016)] investigated the magnetic sublevel population of Ca^+ ions in a Laguerre-Gaussian light beam if the target atoms were just centered along the beam axis. They demonstrated in this experiment that the sublevel population of the excited atoms is uniquely defined by the projection of the orbital angular momentum of the incident light. However, little attention has been paid so far to the question of how the magnetic sublevels are populated when atoms are displaced from the beam axis by some impact parameter b. Here, we analyze this sublevel population for different atomic impact parameters in first-order perturbation theory and by making use of the density-matrix formalism. Detailed calculations are performed especially for the 4s ^2S_1/2 -> 3d ^2D_5/2 transition in Ca^+ ions and for the vector potential of a Laguerre-Gaussian beam in Coulomb gauge. It is shown that the magnetic sublevel population of the excited ^2D_5/2 level varies significantly with the impact parameter and is sensitive to the polarization, the radial index, as well as the orbital angular momentum of the incident light beam.

C. Scullion, D. Doria, L. Romagnani, A. Sgattoni, K. Naughton, D. R. Symes, P. McKenna, A. Macchi, M. Zepf, S. Kar, and M. Borghesi
Polarization Dependence of Bulk Ion Acceleration from Ultrathin Foils Irradiated by High-Intensity Ultrashort Laser Pulses
Physical Review Letters 119, 054801 (2017)

Abstract: The acceleration of ions from ultrathin (10–100 nm) carbon foils has been investigated using intense (∼6×10^20 W  cm−2) ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25−30  MeV/nucleon); in particular, carbon ion energies obtained employing CP pulses were significantly higher (∼2.5 times) than for irradiations employing linearly polarized pulses. Particle-in-cell simulations indicate that radiation pressure acceleration becomes the dominant mechanism for the thinnest targets and CP pulses.

J. Xu, A. Buck, S.-W. Chou, K. Schmid, B. Shen, T. Tajima, M. C. Kaluza, and L. Veisz
Dynamics of electron injection in a laser-wakefield accelerator
Physics of Plasmas 24, 083106 (2017)

Abstract: The detailed temporal evolution of the laser-wakefield acceleration process with controlled injection, producing reproducible high-quality electron bunches, has been investigated. The localized injection of electrons into the wakefield has been realized in a simple way - called shock-front injection - utilizing a sharp drop in plasma density. Both experimental and numerical results reveal the electron injection and acceleration process as well as the electron bunch's temporal properties. The possibility to visualize the plasma wave gives invaluable spatially resolved information about the local background electron density, which in turn allows for an efficient suppression of electron self-injection before the controlled process of injection at the sharp density jump. Upper limits for the electron bunch duration of 6.6 fs FWHM, or 2.8 fs (r.m.s.) were found. These results indicate that shock-front injection not only provides stable and tunable, but also few-femtosecond short electron pulses for applications such as ultrashort radiation sources, time-resolved electron diffraction or for the seeding of further acceleration stages.

D. Wu, and J. W. Wang
Magetostatic amplifier with tunable maximum by twisted-light plasma interactions
Plasma Physics and Controlled Fusion 59, 095010 (2017)

Abstract: Laser beams with Laguerre–Gaussian (LG) mode carry orbital angular momentum (OAM); however, when interacting with plasmas, the net angular momentum acquired by plasmas is basically zero after interaction. Here, we find when there exists a small magetostatic seed along the laser propagation direction, the barrier would be broken, giving rise to dramatic angular momentum transfer from LG-lasers to plasmas. Hence, the net OAM remaining in the plasmas system would continuously enhance the magetostatic field, until the corresponding Larmor frequency of electrons is comparable to the laser frequency in vacuum. Three-dimensional particle-in-cell simulations are performed to confirm our theory, producing spatial-uniform, temporal-stable and extremely-intense magetostatic fields.

J. Rothhardt, S. Hädrich, J. C. Delagnes, E. Cormier, and J. Limpert
High Average Power Near-Infrared Few-Cycle Lasers
Laser and Photonics Reviews 11, 1700043 (2017)

Abstract: Ultra-short laser pulses with only a few optical cycles duration have gained increasing importance during the recent decade and are currently employed in many laboratories worldwide. In addition, modern laser technology nowadays can provide few-cycle pulses at very high average power which advances established studies and opens exciting novel research opportunities. In this paper, the two complementary approaches for providing few-cycle pulses at high average power, namely optical parametric amplification and nonlinear pulse compression, are reviewed and compared. In addition, their limitations and future scaling potential are discussed. Furthermore, selected applications particularly taking advantage of the high average power and high repetition rate are presented.