When logged in, additional information is available in some parts of the website.

Publications by
Sobhy Kholaif

All publications of HI Jena

2020

C. Jauregui, C. Stihler, Y. Tu, S. Kholaif, and J. Limpert
Mitigation of transverse mode instability with travelling waves in high-power fiber amplifiers
Proceedings of SPIE 11260, 112601A (2020)

Abstract: In this work we present a novel way to mitigate the effect of transverse mode instability in high-power fiber amplifiers. In this technique a travelling wave is induced in the modal interference pattern by seeding the amplifier with two modes that have slightly different frequencies. The interference pattern thus formed will travel up-or downstream the fiber (depending on the sign of the frequency difference between the modes) with a certain speed (that depends on the absolute value of the frequency difference). If the travelling speed is chosen properly, the thermally-induced index grating will follow the travelling modal interference pattern creating a constant phase shift between these two elements. Such a constant controllable phase shift allows for a stable energy transfer from the higher-order modes to the fundamental mode or viceversa. Thus, this technique can be adjusted in such a way that, at the output of the fiber almost all the energy is concentrated in the fundamental mode, regardless of the excitation conditions. Moreover, this technique represents one of the first examples of the new family of mitigation strategies acting upon the phase shift between the modal interference pattern and the refractive index grating. Additionally, it even exploits the effect of transverse mode instability for gaining control over the beam profile at the output of the amplifier. Therefore, by adjusting the frequency difference between the seed modes, it is possible to force that the beam at the output acquires the shape of the fundamental mode or that of a higher order mode.

C. Stihler, C. Jauregui, S. Kholaif, and J. Limpert
The sensitivity of the mode instability threshold to different types of intensity noise
Proceedings of SPIE 11260, 1126018 (2020)

Abstract: In this work we experimentally and theoretically investigate the impact of seed intensity-noise on the threshold of transverse mode instability (TMI) in Yb-doped, high-power fiber laser systems and compare it to the impact of pump intensity-noise. Former studies have shown that pump intensity-noise significantly decreases the TMI threshold due to the introduction of a phase shift between the modal interference pattern and the thermallyinduced refractive index grating in the fiber. However, it can be expected that fluctuations of the seed power will also induce such phase shifts due to a change of the extracted energy and the heat load in the fiber. Thus, it is important to investigate which one, i.e. the seed-or the pump intensity-noise, has a severer impact on the TMI threshold. Our experiments have shown that the TMI threshold of a fiber amplifier was decreased by increasing the seednoise amplitude. However, contrary to conventional belief, the impact of seed intensity-noise was much weaker than the one of pump intensity-noise. The measurements are in good agreement with our simulations and can be well explained with previous studies about the noise transfer function. The reason for the weaker impact of seed intensity-noise on the TMI threshold is the attenuation of its frequency components below 20 kHz in saturated fiber amplifiers, which includes the frequencies relevant for TMI. Thus, the main trigger for TMI in saturated fiber amplifiers can be considered to be pump intensity-noise. A suppression of this noise below 20 kHz represents a promising way to increase the TMI threshold of fiber laser systems.