When logged in, additional information is available in some parts of the website.

Publications by
Mohammed Almassarani

All publications of HI Jena


A. Woldegeorgis, T. Kurihara, M. Almassarani, B. Beleites, R. Grosse, F. Ronneberger, and A. Gopal
Multi-MV/cm longitudinally polarized terahertz pulses from laser–thin foil interaction
Optica 5, 1474 (2018)

Abstract: Longitudinally polarized terahertz radiation offers access to the elementary excitations and particles that cannot be addressed by transverse waves. While transverse electric fields exceeding 1 MV/cm are widely utilized for nonlinear terahertz spectroscopy, longitudinally polarized terahertz waves at this field strength are yet to be realized. In this paper, we experimentally demonstrate that by focusing radially polarized terahertz fields generated from laser–thin metallic foil interaction, longitudinally polarized terahertz with record-breaking field strength above 1.5 MV/cm can be obtained. Furthermore, we also traced the evolution of the geometric phase of the longitudinal component as it propagates through focus. A novel scheme based on noncollinear electro-optic detection has been utilized to unambiguously measure the polarization states. Our result will scale up the nonlinear spectroscopy of solid materials and particle acceleration experiments where on-axis polarization plays a crucial role.

S. Herzer, A. Woldegeorgis, J. Polz, A. Reinhard, M. Almassarani, B. Beleites, F. Ronneberger, R. Grosse, G. G. Paulus, U. Huebner, T. May, and A. Gopal
An investigation on THz yield from laser-produced solid density plasmas at relativistic laser intensities
New Journal of Physics 20, 063019 (2018)

Abstract: We experimentally characterize the generation of high-power terahertz radiation (THz) at the rear surface of a target irradiated by multiple laser pulses. A detailed dependence of the THz yield as a function of laser pulse duration, energy, target material and thickness is presented. We studied the THz radiation emitted mainly in two directions from the target rear surface, namely target normal (acceptance angle 0.87 sr) and non-collinear direction (perpendicular to the target normal direction—acceptance angle 4.12 sr). Independent measurements based on electro-optic diagnostics and pyroelectric detector were employed to estimate the THz yield. Most of the energy is emitted at large angles relative to the target normal direction. THz yield increases with incident laser intensity and thinner targets are better emitters of THz radiation compared to thicker ones.