When logged in, additional information is available in some parts of the website.

Publications by
Martin Gebhardt

All publications of HI Jena

2021

C. Gaida, M. Gebhardt, T. Heuermann, Z. Wang, C. Jauregui, and J. Limpert
Transverse mode instability and thermal effects in thulium-doped fiber amplifiers under high thermal loads
Optics Express 29, 14963 (2021)

Abstract: We experimentally analyze the average-power-scaling capabilities of ultrafast, thulium-doped fiber amplifiers. It has been theoretically predicted that thulium-doped fiber laser systems, with an emission wavelength around 2 mu m, should be able to withstand much higher heat-loads than their Yb-doped counterparts before the onset of transverse mode instability (TMI) is observed. In this work we experimentally verify this theoretical prediction by operating thulium doped fibers at very high heat-load. In separate experiments we analyze the performance of two different large-core, thulium-doped fiber amplifiers. The first experiment aims at operating a short, very-large core, thulium-doped fiber amplifier at extreme heat-load levels of more than 300 W/m. Even at this extreme heat-load level, the onset of TMI is not observed. The second experiment maximizes the extractable average-output power from a large-core, thulium-doped, fiber amplifier. We have achieved a pump-limited average output power of 1.15 kW without the onset of TMI. However, during a longer period of operation at this power level the amplifier performance steadily degraded and TMI could be observed for average powers in excess of 847 W thereafter. This is the first time, to the best of our knowledge, that TMI has been reported in a thulium-doped fiber amplifier.

M. Gebhardt, E. Amuah, R. Klas, H. Stark, J. Buldt, A. Steinkopff, and J. Limpert
Investigation of spatiotemporal output beam profile instabilities from differentially pumped capillaries
Optics Express 29, 6957 (2021)

Abstract: Differentially pumped capillaries, i.e., capillaries operated in a pressure gradient environment, are widely used for nonlinear pulse compression. In this work, we show that strong pressure gradients and high gas throughputs can cause spatiotemporal instabilities of the output beam profile. The instabilities occur with a sudden onset as the flow evolves from laminar to turbulent. Based on the experimental and numerical results, we derive guidelines to predict the onset of those instabilities and discuss possible applications in the context of nonlinear flow dynamics. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

M. Gebhardt, T. Heuermann, R. Klas, C. Liu, A. Kirsche, M. Lenski, Z. Wang, C. Gaida, J. E. Antonio-Lopez, A. Schulzgen, R. Amezcua-Correa, J. Rothhardt, and J. Limpert
Bright, high-repetition-rate water window soft X-ray source enabled by nonlinear pulse self-compression in an antiresonant hollow-core fibre
Light: Science & Applications 10, 2021 (2021)

Abstract: Bright, coherent soft X-ray radiation is essential to a variety of applications in fundamental research and life sciences. To date, a high photon flux in this spectral region can only be delivered by synchrotrons, free-electron lasers or high-order harmonic generation sources, which are driven by kHz-class repetition rate lasers with very high peak powers. Here, we establish a novel route toward powerful and easy-to-use SXR sources by presenting a compact experiment in which nonlinear pulse self-compression to the few-cycle regime is combined with phase-matched high-order harmonic generation in a single, helium-filled antiresonant hollow-core fibre. This enables the first 100 kHz-class repetition rate, table-top soft X-ray source that delivers an application-relevant flux of 2.8 x 10(6) photon s(-1) eV(-1) around 300 eV. The fibre integration of temporal pulse self-compression (leading to the formation of the necessary strong-field waveforms) and pressure-controlled phase matching will allow compact, high-repetition-rate laser technology, including commercially available systems, to drive simple and cost-effective, coherent high-flux soft X-ray sources.

2020

Z. Wang, T. Heuermann, M. Gebhardt, C. Gaida, C. Jauregui, and J. Limpert
108 W average power ultrashort pulses with GW-level peak power from a Tm-doped fiber CPA system
Proceedings of SPIE 11260, 112600K (2020)

Abstract: Applications such as material processing, spectroscopy, particle acceleration, high-harmonic and mid-IR generation can greatly benefit from high repetition rate, high power, ultrafast laser sources emitting around 2 μm wavelength. In this contribution we present a single-channel Tm-doped fiber chirped-pulse amplifier delivering 108 W of average output power at 417 kHz repetition rate with 250 fs pulse duration and 0.73 GW of pulse peak power. To the best of our knowledge, this is the first demonstration of an ultrafast Tm-doped fiber laser with more than 100 W of average power and GW-level peak power.

M. Gebhardt, T. Heuermann, Z. Wang, M. Lenski, C. Gaida, R. Klas, A. Kirsche, S. Hädrich, J. Rothhardt, and J. Limpert
Soft x-ray high order harmonic generation driven by high repetition rate ultrafast thulium-doped fiber lasers
Proceedings of SPIE 11260, 112600U (2020)

Abstract: Intense, ultrafast laser sources with an emission wavelength beyond the well-established near-IR are important tools for exploiting the wavelength scaling laws of strong-field, light-matter interactions. In particular, such laser systems enable high photon energy cut-off HHG up to, and even beyond, the water window thus enabling a plethora of subsequent experiments. Ultrafast thulium-doped fiber laser systems (providing a broad amplification bandwidth in the 2 μm wavelength region) represent a promising, average-power scalable laser concept in this regard. These lasers already deliver ∼100 fs pulses with multi-GW peak power at hundreds of kHz repetition rate. In this work, we show that combining ultrafast thulium-doped fiber CPA systems with hollow-core fiber based nonlinear pulse compression is a promising approach to realize high photon energy cut-off HHG drivers. Herein, we show that thulium-doped, fiber-laser-driven HHG in argon can access the highly interesting spectral region around 90 eV. Additionally, we show the first water window high-order harmonic generation experiment driven by a high repetition rate, thulium-doped fiber laser system. In this proof of principle demonstration, a photon energy cut-off of approximately 400 eV has been achieved, together with a photon flux <105 ph/s/eV at 300 eV. These results emphasize the great potential of exploiting the HHG wavelength scaling laws with 2 μm fiber laser technology. Improvements of the HHG efficiency, the overall HHG yield and further laser performance enhancements will be the subject of our future work.

T. Heuermann, M. Gebhardt, Z. Wang, C. Gaida, F. Maes, C. Jauregui, and J. Limpert
Watt-class optical parametric amplification driven by a thulium doped fiber laser in the molecular fingerprint region
Proceedings of SPIE 11260, 112600I (2020)

Abstract: Numerous molecules important for environmental and life sciences feature strong absorption bands in the molecular fingerprint region from 3 μm-20 μm. While mature drivers at 1 μm wavelength are the workhorse for the generation of radiation up to 5 μm (utilizing down-conversion in nonlinear crystals) they struggle to directly produce radiation beyond this limit, due to impeding nonlinear absorption in non-oxide crystals. Since only non-oxide crystals provide transmission in the whole molecular fingerprint region, a shift to longer driving wavelengths is necessary for a power scalable direct conversion of radiation into the wavelength region beyond 5 μm. In this contribution, we present a high-power single-stage optical parametric amplifier driven by a state of the art 2 μm wavelength, thulium-doped fiber chirped pulse amplifier. In this experiment, the laser system provided 23 W at 417 kHz repetition rate with 270 fs pulse duration to the parametric amplifier. The seed signal is produced by supercontinuum generation in 3 mm of sapphire and pre-chirped with 3 mm of germanium. Combining this signal with the pump radiation and focusing it into a 2 mm thick GaSe crystal with a pump intensity of 160 GW/cm2 lead to an average idler power of 700 mW with a spectrum spanning from 9 μm-12 μm. To the best of our knowledge, this is the highest average power reported from a parametric amplifier directly driven by a 2 μm ultrafast laser in the wavelength region beyond 5 μm. Employing common multi-stage designs, this approach might in the future enable multi-watt high-power parametric amplification in the long wavelength mid infrared.

C. Gaida, F. Stutzki, M. Gebhardt, T. Heuermann, S. Breitkopf, T. Eidam, J. Rothhardt, and J. Limpert
4-channel Coherently Combined Long-term-stable Ultrafast Thulium-doped Fiber CPA
(2020)

Abstract: We present the first coherently combined, thulium-doped fiber CPA delivering >100 W average-power and simultaneously >1 GW of peak-power. Incorporating four amplifier channels the laser delivers pulses with >228 µJ energy and <120 fs duration at 1940 nm center wavelength. Excellent long-term stability is achieved with an average power fluctuation of <0.5% RMS over >48 hours – ideal prerequisites for next-generation industrial and scientific applications.

M. Tschernajew, S. Hädrich, R. Klas, M. Gebhardt, R. Horsten, S. Weerdenburg, S. Pyatchenkov, W. Coene, J. Rothhardt, T. Eidam, and . others
High Repetition Rate High Harmonic Generation with Ultra-high Photon Flux
(2020)

Abstract: A 100W fiber laser system is used to drive a high repetition rate HHG beamline producing record-high photon flux of >10^11 photons/s at 69-75eV and >10^10 photons/s for harmonics between 115eV and 140eV.

M. Gebhardt, T. Heuermann, C. Gaida, Z. Wang, M. Lenski, R. Klas, A. Kirsche, C. Liu, S. Hädrich, C. Jauregui, and . others
High-order harmonic generation in noble gas driven by high-power ultrafast thulium-doped fiber lasers
(2020)

Abstract: We present HHG results obtained with thulium-doped fiber lasers. It is the first time that a photon energy cut-off close to 400 eV has been demonstrated using this highly scalable laser technology.

M. Gebhardt, T. Heuermann, C. Gaida, Z. Wang, M. Lenski, R. Klas, A. Kirsche, C. Liu, S. Hädrich, C. Jauregui, and . others
Soft x-ray high order harmonic generation from high power ultrafast thulium-doped fiber lasers
(2020)

Abstract: We report on soft x-ray HHG driven by a thulium-doped fiber laser. It is the first time that a photon energy cut-off ~400 eV has been demonstrated using this highly scalable laser technology.

R. Klas, J. Buldt, H. Stark, A. Kirsche, M. Gebhardt, J. Rothhardt, and J. Limpert
Sub-20 fs high-energy pulse generation at 515 nm with 50 W of average power
(2020)

Abstract: A nonlinear compression of 515 nm pulses resulting in 17.8 fs-, 50 µJ-pulses at 1 MHz, 50 W average power and near diffraction limited beam quality is presented.

Z. Wang, T. Heuermann, M. Gebhardt, M. Lenski, C. Gaida, C. Jauregui, and J. Limpert
Ultrafast Tm-doped fiber CPA system delivering GW-level peak power pulses at > 100 W average power
(2020)

Abstract: In this contribution, we present a Tm-doped fiber chirped pulse amplifier system delivering 10⁸ W of average output power at 417 kHz repetition rate with 250 fs pulse duration and close to 1 GW of pulse peak power.

2019

T. P. Butler, D. Gerz, C. Hofer, J. Xu, C. Gaida, T. Heuermann, M. Gebhardt, L. Vamos, W. Schweinberger, J. A. Gessner, T. Siefke, M. Heusinger, U. Zeitner, A. Apolonski, N. Karpowicz, J. Limpert, F. Krausz, and I. Pupeza
Watt-scale 50-MHz source of single-cycle waveform-stable pulses in the molecular fingerprint region
Optics Letters 44, 1730 (2019)

Abstract: We report a coherent mid-infrared (MIR) source with a combination of broad spectral coverage (6--18 µm), high repetition rate (50 MHz), and high average power (0.5 W). The waveform-stable pulses emerge via intrapulse difference-frequency generation (IPDFG) in a GaSe crystal, driven by a 30-W-average-power train of 32-fs pulses spectrally centered at 2 µm, delivered by a fiber-laser system. Electro-optic sampling (EOS) of the waveform-stable MIR waveforms reveals their single-cycle nature, confirming the excellent phase matching both of IPDFG and of EOS with 2-µm pulses in GaSe.

E. Shestaev, C. Gaida, T. Heuermann, M. Gebhardt, T. Butler, D. Gerz, N. Lilienfein, P. Sulzer, M. Fischer, R. Holzwarth, A. Leitenstorfer, I. Pupeza, and J. Limpert
High power frequency comb delivered by a Tm-doped fiber laser
Proceedings of SPIE 10897, 17 (2019)

Abstract: Frequency combs are an enabling technology for metrology and spectroscopic applications in fundamental and life sciences. While frequency combs in the 1 lam regime, produced from Yb-based systems have already exceeded the 100 W - level, high power coverage of the interesting mid-infrared wavelength range remains yet to be demonstrated. Tm- and Ho-doped laser systems have recently shown operation at high average power levels in the 2 lam wavelength regime. However, frequency combs in this wavelength range have not exceeded the 5 W-average power level. In this work, we present a high power frequency comb, delivered by a Tm-doped chirped-pulse amplifier with subsequent nonlinear pulse compression. With an integrated phase noise of <320 mrad, low relative intensity noise of <0.5% and an average power of 60 W at 100 MHz repetition rate (and <30 fs FWHM pulse duration), this system demonstrates high stability and broad spectral coverage at an unrivalled average power level in this wavelength regime. Therefore, this laser will enable metrology and spectroscopy with unprecedented sensitivity and acquisition time. It is our ongoing effort to extend the spectral coverage of this system through the utilization of parametric frequency conversion into the mid-IR, thus ultimately enabling high power fingerprint spectroscopy in the entire molecular fingerprint region (2 - 20 mu m).

T. Heuermann, M. Gebhardt, C. Gaida, I. Pupeza, and J. Limpert
High-power ultrafast Tm-doped fiber lasers for the generation of mid-infrared radiation in the molecular fingerprint region
Proceedings of SPIE 10897, 16 (2019)

Abstract: Accessing the molecular fingerprint region between 2 and 20 mu m is a key aspect in modern metrology and spectroscopy. While the wavelength range from 2-5 mu m can easily be addressed through nonlinear frequency conversion starting from well-matured 1 mu m driving lasers, access to the deep mid-IR wavelength regime is difficult. This is, because of the limited transmission of non-oxide crystals (that offer high nonlinearity and good transmission for the aspired mid-IR idler) at the pump wavelength and/or multi-photon absorption. Shifting to a longer pump wavelength relieves these limitations. In this work we present an experiment based on intra pulse difference frequency generation (IPDFG) in GaSe driven by an ultrafast Tm-doped chirped pulse amplifier. This experiment led to an octave spanning mid-IR spectrum, covering the wavelength range between 7.2-16.5 mu m (-10 dB width) with 450 mW of average power at 1.25 MHz repetition rate. This result outperforms comparable sources driven at 1 mu m wavelength in average power and conversion efficiency, while providing much broader spectral coverage. To further facilitate the use of these promising sources in real-world spectroscopic applications, we have built a nonlinear amplifier, which, based on its compact and robust design is an ideal candidate in this respect. Optimizing the output ultimately led to high pulse quality 50 fs pulses with 250 nJ of pulse energy at 80 MHz of repetition rate and 20 W average output power, exceeding current designs in the anomalous dispersion regime by 1 order of magnitude. It is our ongoing effort to utilize this laser for parametric downconversion. Covering the wavelength regime beyond 5 mu m wavelength would make it an enabling technology for next generation spectroscopy, fundamental and life sciences.

2018

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, and J. Limpert
Ultrafast thulium fiber laser system emitting more than 1  kW of average power
Optics Letters 43, 5853 (2018)

Abstract: In this Letter, we report on the generation of 1060 W average power from an ultrafast thulium-doped fiber chirped pulse amplification system. After compression, the pulse energy of 13.2 μJ with a pulse duration of 265 fs at an 80 MHz pulse repetition rate results in a peak power of 50 MW spectrally centered at 1960 nm. Even though the average heat-load in the fiber core is as high as 98 W/m, we confirm the diffraction-limited beam quality of the compressed output. Furthermore, the evolution of the relative intensity noise with increasing average output power has been measured to verify the absence of transversal mode instabilities. This system represents a new average power record for thulium-doped fiber lasers (1150 W uncompressed) and ultrashort pulse fiber lasers with diffraction-limited beam quality, in general, even considering single-channel ytterbium-doped fiber amplifiers.

C. Gaida, M. Gebhardt, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, A. Tünnermann, I. Pupeza, and J. Limpert
Watt-scale super-octave mid-infrared intrapulse difference frequency generation
Light: Science & Applications 7, 94 (2018)

Abstract: The development of high-power, broadband sources of coherent mid-infrared radiation is currently the subject of intense research that is driven by a substantial number of existing and continuously emerging applications in medical diagnostics, spectroscopy, microscopy, and fundamental science. One of the major, long-standing challenges in improving the performance of these applications has been the construction of compact, broadband mid-infrared radiation sources, which unify the properties of high brightness and spatial and temporal coherence. Due to the lack of such radiation sources, several emerging applications can be addressed only with infrared (IR)-beamlines in large-scale synchrotron facilities, which are limited regarding user access and only partially fulfill these properties. Here, we present a table-top, broadband, coherent mid-infrared light source that provides brightness at an unprecedented level that supersedes that of synchrotrons in the wavelength range between 3.7 and 18 µm by several orders of magnitude. This result is enabled by a high-power, few-cycle Tm-doped fiber laser system, which is employed as a pump at 1.9 µm wavelength for intrapulse difference frequency generation (IPDFG). IPDFG intrinsically ensures the formation of carrier-envelope-phase stable pulses, which provide ideal prerequisites for state-of-the-art spectroscopy and microscopy.

C. Gaida, T. Heuermann, M. Gebhardt, E. Shestaev, T. P. Butler, D. Gerz, N. Lilienfein, P. Sulzer, M. Fischer, R. Holzwarth, A. Leitenstorfer, I. Pupeza, and J. Limpert
High-power frequency comb at 2  μm wavelength emitted by a Tm-doped fiber laser system
Optics Letters 43, 5178 (2018)

Abstract: We report on the generation of a high-power frequency comb in the 2 μm wavelength regime featuring high amplitude and phase stability with unprecedented laser parameters, combining 60 W of average power with <30  fs pulse duration. The key components of the system are a mode-locked Er:fiber laser, a coherence-preserving nonlinear broadening stage, and a high-power Tm-doped fiber chirped-pulse amplifier with subsequent nonlinear self-compression of the pulses. Phase locking of the system resulted in a phase noise of less than 320 mrad measured within the 10 Hz–30 MHz band and 30 mrad in the band from 10 Hz to 1 MHz.

T. Heuermann, C. Gaida, M. Gebhardt, and J. Limpert
Thulium-doped nonlinear fiber amplifier delivering 50  fs pulses at 20  W of average power
Optics Letters 43, 4441 (2018)

Abstract: In this Letter, we present an optimized nonlinear amplification scheme in the 2 µm wavelength region. This laser source delivers 50 fs pulses at an 80 MHz repetition rate with exceptional temporal pulse quality and 20 W of average output power. According to predictions from numerical simulations, it is experimentally confirmed that dispersion management is crucial to prevent the growth of side pulses and an increase of the energy content in a temporal pedestal surrounding the self-compressed pulse. Based on these results, we discuss guidelines to ensure high temporal pulse quality from nonlinear femtosecond fiber amplifiers in the anomalous dispersion regime.

M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt
Thermodynamic control of soliton dynamics in liquid-core fibers
Optica 5, 695 (2018)

Abstract: Liquid-core fibers offer local external control over pulse dispersion due to their strong thermodynamic response, offering a new degree of freedom in accurate soliton steering for reconfigurable nonlinear light generation. Here, we show how to accurately control soliton dynamics and supercontinuum generation in carbon disulfide/silica fibers by temperature and pressure tuning, monitored via the spectral location and the onset energy of non-solitonic radiation. Simulations and phase-matching calculations based on an extended thermodynamic dispersion model of carbon disulfide confirm the experimental results, which allows us to demonstrate the potential of temperature detuning of liquid-core fibers for octave spanning recompressible supercontinuum generation in the near-infrared.

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt
Carbon chloride-core fibers for soliton mediated supercontinuum generation
Optics Express 26, 3221 (2018)

Abstract: We report on soliton-fission mediated infrared supercontinuum generation in liquid-core step-index fibers using highly transparent carbon chlorides (CCl4, C2Cl4). By developing models for the refractive index dispersions and nonlinear response functions, dispersion engineering and pumping with an ultrafast thulium fiber laser (300 fs) at 1.92 µm, distinct soliton fission and dispersive wave generation was observed, particularly in the case of tetrachloroethylene (C2Cl4). The measured results match simulations of both the generalized and a hybrid nonlinear Schrödinger equation, with the latter resembling the characteristics of non-instantaneous medium via a static potential term and representing a simulation tool with substantially reduced complexity. We show that C2Cl4 has the potential for observing non-instantaneous soliton dynamics along meters of liquid-core fiber opening a feasible route for directly observing hybrid soliton dynamics.

2017

M. Gebhardt, C. Gaida, T. Heuermann, F. Stutzki, C. Jauregui, J. Antonio-Lopez, A. Schulzgen, R. Amezcua-Correa, J. Limpert, and A. Tünnermann
Nonlinear pulse compression to 43  W GW-class few-cycle pulses at 2  μm wavelength
Optics Letters 42, 4179 (2017)

Abstract: High-average power laser sources delivering intense few-cycle pulses in wavelength regions beyond the near infrared are promising tools for driving the next generation of high-flux strong-field experiments. In this work, we report on nonlinear pulse compression to 34.4 μJ-, 2.1-cycle pulses with 1.4 GW peak power at a central wavelength of 1.82 μm and an average power of 43 W. This performance level was enabled by the combination of a high-repetition-rate ultrafast thulium-doped fiber laser system and a gas-filled antiresonant hollow-core fiber.

M. Kozák, P. Beck, H. Deng, J. McNeur, N. Schönenberger, C. Gaida, F. Stutzki, M. Gebhardt, J. Limpert, A. Ruehl, I. Hartl, O. Solgaard, J. S. Harris, R. L. Byer, and P. Hommelhoff
Acceleration of sub-relativistic electrons with an evanescent optical wave at a planar interface
Optics Express 25, 19195 (2017)

Abstract: We report on a theoretical and experimental study of the energy transfer between an optical evanescent wave, propagating in vacuum along the planar boundary of a dielectric material, and a beam of sub-relativistic electrons. The evanescent wave is excited via total internal reflection in the dielectric by an infrared (λ = 2 μm) femtosecond laser pulse. By matching the electron propagation velocity to the phase velocity of the evanescent wave, energy modulation of the electron beam is achieved. A maximum energy gain of 800 eV is observed, corresponding to the absorption of more than 1000 photons by one electron. The maximum observed acceleration gradient is 19 ± 2 MeV/m. The striking advantage of this scheme is that a structuring of the acceleration element’s surface is not required, enabling the use of materials with high laser damage thresholds that are difficult to nano-structure, such as SiC, Al2O3 or CaF2.

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. Schmidt
Hybrid soliton dynamics in liquid-core fibres
Nature Communications 8, 42 (2017)

Abstract: The discovery of optical solitons being understood as temporally and spectrally stationary optical states has enabled numerous innovations among which, most notably, supercontinuum light sources have become widely used in both fundamental and applied sciences. Here, we report on experimental evidence for dynamics of hybrid solitons—a new type of solitary wave, which emerges as a result of a strong non-instantaneous nonlinear response in CS2-filled liquid-core optical fibres. Octave-spanning supercontinua in the mid-infrared region are observed when pumping the hybrid waveguide with a 460 fs laser (1.95 μm) in the anomalous dispersion regime at nanojoule-level pulse energies. A detailed numerical analysis well correlated with the experiment uncovers clear indicators of emerging hybrid solitons, revealing their impact on the bandwidth, onset energy and noise characteristics of the supercontinua. Our study highlights liquid-core fibres as a promising platform for fundamental optics and applications towards novel coherent and reconfigurable light sources.

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann
High average power nonlinear compression to 4 GW, sub-50  fs pulses at 2 μm wavelength
Optics Letters 42, 747 (2017)

Abstract: The combination of high-repetition-rate ultrafast thulium-doped fiber laser systems and gas-based nonlinear pulse compression in waveguides offers promising opportunities for the development of high-performance few-cycle laser sources at 2 μm wavelength. In this Letter, we report on a nonlinear pulse compression stage delivering 252 μJ, sub-50 fs-pulses at 15.4 W of average power. This performance level was enabled by actively mitigating ultrashort pulse propagation effects induced by the presence of water vapor absorptions.

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann
High-average power 4 GW pulses with sub-8 optical cycles from a Tm-doped fiber laser driven nonlinear pulse compression stage
(2017)

Abstract: Thulium-doped fiber lasers are an attractive concept for the generation of mid-infrared (mid-IR) ultrashort pulses around 2 μm wavelength with an unprecedented average power. To date, these systems deliver >150 W of average power and GW-class pulse peak powers with output pulse durations of a few hundreds of fs. As some applications can greatly benefit from even shorter pulse durations, the spectral broadening and subsequent temporal pulse compression can be a key enabling technology for high average power few-cycle laser sources around 2 μm wavelength. In this contribution we demonstrate the nonlinear compression of ultrashort pulses from a high repetition rate Tm-doped fiber laser using a nitrogen gas-filled hollow capillary. Pulses with 4 GW peak power, 46 fs FWHM duration at an average power of 15.4 W have been achieved. This is, to the best of our knowledge, the first 2 μm laser delivering intense, GW-pulses with sub 50-fs pulse duration and an average power of >10 W. Based on this result, we discuss the next steps towards a 100 W-level, GW-class few-cycle mid-IR laser.

F. Stutzki, C. Gaida, M. Gebhardt, C. Jauregui, J. Limpert, A. Tünnermann, and I. Pupeza
Self-protecting nonlinear compression in a solid fiber for long-term stable ultrafast lasers at 2 µm wavelength
(2017)

Abstract: Ultrashort-pulse laser systems are an enabling technology for numerous applications. The stability of such systems is especially crucial for frequency metrology and high precision spectroscopy. Thulium-based fiber lasers are an ideal starting point as a reliable and yet powerful source for the nonlinear conversion towards the mid-IR region. Recently, we have demonstrated that nonlinear self-compression in a fused silica solid-core fiber allows for few-cycle pulse duration with up to 24 MW peak power using a high-repetition rate thulium-based fiber laser system operating at around 2 μm wavelength [1]. This experiment operates near the self-focusing limit of about 24 MW for circular polarization, which increases the requirements for the system stability due to the risk of a fiber damage. Here, we present a self-protecting nonlinear compression regime allowing for long-term operation and high output-pulse stability with very similar output performance.

C. Gaida, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
Towards sub-100 fs multi-GW pulses directly emitted from a Thulium-doped fiber CPA system
(2017)

Abstract: Experimental demonstrations of Tm-doped fiber amplifiers (typically in CW- or narrow-band pulsed operation) span a wavelength range going from about 1700 nm to well beyond 2000 nm. Thus, it should be possible to obtain a bandwidth of more than 100 nm, which would enable sub-100 fs pulse duration in an efficient, linear amplification scheme. In fact, this would allow the emission of pulses with less than 20 optical cycles directly from a Tm-doped fiber system, something that seems to be extremely challenging for other dopants in a fused silica fiber. In this contribution, we summarize the current development of our Thulium-doped fiber CPA system, demonstrate preliminary experiments for further scaling and discuss important design factors for the next steps. The current single-channel laser system presented herein delivers a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. Special care has been taken to reduce the detrimental impact of water vapor absorption by placing the whole system in a dry atmosphere housing (<0.1% rel. humidity) and by using a sufficiently long wavelength (1920-1980 nm). The utilization of a low-pressure chamber in the future will allow for the extension of the amplification bandwidth. Preliminary experiments demonstrating a broader amplification bandwidth that supports almost 100 fs pulse duration and average power scaling to < 100W have already been performed. Based on these results, a Tm-doped fiber CPA with sub-100 fs pulse duration, multi-GW pulse peak power and >100 W average power can be expected in the near future.

2016

C. Gaida, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
Thulium-doped fiber chirped-pulse amplification system with 2 GW of peak power
Optics Letters 41, 4130 (2016)

Abstract: Thulium-doped fibers with ultra large mode-field areas offer new opportunities for the power scaling of mid-IR ultrashort-pulse laser sources. Here, we present a laser system delivering a pulse-peak power of 2 GW and a nearly transform-limited pulse duration of 200 fs in combination with 28.7 W of average power. This performance level has been achieved by optimizing the pulse shape, reducing the overlap with atmospheric absorption lines, and incorporating a climate chamber to reduce the humidity of the atmospheric environment.

2015

C. Gaida, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
Self-compression in a solid fiber to 24  MW peak power with few-cycle pulses at 2  μm wavelength
Optics Letters 40, 5160 (2015)

Abstract: We report on the experimental realization of a compact, fiber-based, ultrashort-pulse laser system in the 2 μm wavelength region delivering 24 fs pulse duration with 24 MW pulse peak power and 24.6 W average power. This performance level has been enabled by the favorable quadratic wavelength-dependence of the self-focusing limit, which has been experimentally verified to be at approximately 24 MW for circular polarization in a solid-core fused-silica fiber operated at a wavelength around 2 μm. The anomalous dispersion in this wavelength region allows for a simultaneous nonlinear spectral broadening and temporal pulse compression. This makes an additional compression stage redundant and facilitates a very simple and power-scalable approach. Simulations that include both the nonlinear pulse evolution and the transverse optical Kerr effect support the experimental results.

M. Gebhardt, C. Gaida, F. Stutzki, S. Hädrich, C. Jauregui, J. Limpert, and A. Tünnermann
Impact of atmospheric molecular absorption on the temporal and spatial evolution of ultra-short optical pulses
Optics Express 23, 13776 (2015)

Abstract: We present a rigorous study on the impact of atmospheric molecular absorption on the linear propagation of ultrashort pulses in the mid-infrared wavelength region. An ultrafast thulium-based fiber laser was employed to experimentally investigate ultrashort-pulse propagation through the atmosphere in a spectral region containing several strong molecular absorption lines. The atmospheric absorption profile causes a significant degradation of the pulse quality in the time domain as well as a distortion of the transverse beam profile in the spatial domain. Numerical simulations carried out in the small signal limit accurately reproduce the experimental observations in the time domain and reveal that the relative loss in peak power after propagation can be more than twice as high as the relative amount of absorbed average power. Although their nature is purely linear (i.e. the intensities considered are sufficiently low) the discussed effects represent significant challenges to performance-scaling of mid-infrared ultrafast lasers operating in spectral regions with molecular absorption bands. Guidelines for an efficient mitigation of the pulse quality degradation and the beam profile distortion are discussed.

M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
Nonlinear compression of an ultrashort-pulse thulium-based fiber laser to sub-70  fs in Kagome photonic crystal fiber
Optics Letters 40, 2770 (2015)

Abstract: Nonlinear pulse compression of ultrashort pulses is an established method for reducing the pulse duration and increasing the pulse peak power beyond the intrinsic limits of a given laser architecture. In this proof-of-principle experiment, we demonstrate nonlinear compression of the pulses emitted by a high-repetition-rate thulium-based fiber CPA system. The initial pulse duration of about 400 fs has been shortened to <70  fs with 19.7 μJ of pulse energy, which corresponds to about 200 MW of pulse peak power.

C. Gaida, M. Kienel, M. Müller, A. Klenke, M. Gebhardt, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann
Coherent combination of two Tm-doped fiber amplifiers
Optics Letters 40, 2301 (2015)

Abstract: The efficient coherent combination of two ultrafast Tm-doped fiber amplifiers in the 2-µm wavelength region is demonstrated. The performance of the combined amplifiers is compared to the output characteristics of a single amplifier being limited by the onset of detrimental nonlinear effects. Nearly transform-limited pulses with 830- fs duration, 22-µJ pulse energy, and 25-MW peak power have been achieved with a combining efficiency greater than 90%. Based on this result, it can be expected that 2-µm-ultrafast-fiber-laser systems will enter new performance realms in the near future.

C. Gaida, F. Stutzki, M. Gebhardt, F. Jansen, A. Wienke, U. D. Zeitner, F. Fuchs, C. Jauregui, D. Wandt, D. Kracht, J. Limpert, and A. Tünnermann
Sub-700 fs pulses at 152 W average power from a Tm-doped fiber CPA system
Proceedings of SPIE 9344, 93441K (2015)

Abstract: Thulium-based fiber lasers potentially provide for the demand of high average-power ultrafast laser systems operating at an emission wavelength around 2 μm. In this work we use a Tm-doped photonic-crystal fiber (PCF) with a mode field diameter of 36 μm enabling high peak powers without the onset of detrimental nonlinear effects. For the first time a Tm-doped PCF amplifier allows for a pump-power limited average output power of 241 W with a slope efficiency above 50%, good beam quality and linear polarization. A record compressed average power of 152 W and a pulse peak power of more than 4 MW at sub-700 fs pulse duration are enabled by dielectric gratings with diffraction efficiencies higher than 98% leading to a total compression efficiency of more than 70%. A further increase of pulse peak power towards the GW-level is planned by employing Tm-doped large-pitch fibers with mode field diameters well above 50 μm. The coherent combination of ultrafast pulses might eventually lead to kW-level average power and multi-GW peak power.

F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, C. Jauregui, J. Limpert, and A. Tünnermann
Tm-based fiber-laser system with more than 200  MW peak power
Optics Letters 40, 9 (2015)

Abstract: Tm-based fiber-laser systems are an attractive concept for the development of high-performance laser sources in the spectral region around 2 μm wavelength. Here we present a system delivering a pulse-peak power higher than 200 MW in combination with 24 W average power and 120 μJ pulse energy. Key components enabling this performance level are a Tm-doped large-pitch fiber with a mode-field diameter of 65 μm, highly efficient dielectric gratings, and a Tm-based fiber oscillator operating in the stretched-pulse regime.

2014

F. Stutzki, C. Gaida, M. Gebhardt, F. Jansen, A. Wienke, U. Zeitner, F. Fuchs, C. Jauregui, D. Wandt, D. Kracht, J. Limpert, and A. Tünnermann
152  W average power Tm-doped fiber CPA system
Optics Letters 39, 4671 (2014)

Abstract: A high-power thulium (Tm)-doped fiber chirped-pulse amplification system emitting a record compressed average output power of 152 W and 4 MW peak power is demonstrated. This result is enabled by utilizing Tm-doped photonic crystal fibers with mode-field diameters of 35 μm, which mitigate detrimental nonlinearities, exhibit slope efficiencies of more than 50%, and allow for reaching a pump-power-limited average output power of 241 W. The high-compression efficiency has been achieved by using multilayer dielectric gratings with diffraction efficiencies higher than 98%.