When logged in, additional information is available in some parts of the website.

Publications by
Frank Schorcht

All publications of HI Jena

2019

I. Tamer, S. Keppler, J. Körner, M. Hornung, M. Hellwing, F. Schorcht, J. Hein, and M. Kaluza
Modeling of the 3D spatio-temporal thermal profile of joule-class Yb³⁺-based laser amplifiers
High Power Laser Science and Engineering 7, E42 (2019)

Abstract: Thermal profile modification of an active material in a laser amplifier via optical pumping results in a change in the material’s refractive index, and causes thermal expansion and stress, eventually leading to spatial phase aberrations, or even permanent material damage. For this purpose, knowledge of the 3D spatio-temporal thermal profile, which can currently only be retrieved via numerical simulations, is critical for joule-class laser amplifiers to reveal potentially dangerous thermal features within the pumped active materials. In this investigation, a detailed, spatio-temporal numerical simulation was constructed and tested for accuracy against surface thermal measurements of various end-pumped Yb³⁺-doped laser-active materials. The measurements and simulations show an excellent agreement and the model was successfully applied to a joule-class Yb³⁺-based amplifier currently operating in the POLARIS laser system at the Friedrich-Schiller-University and Helmholtz-Institute Jena in Germany.

2018

G. A. Becker, S. Tietze, S. Keppler, J. Reislöhner, J. H. Bin, L. Bock, F.-E. Brack, J. Hein, M. Hellwing, P. Hilz, M. Hornung, A. Kessler, S. D. Kraft, S. Kuschel, H. Liebetrau, W. Ma, J. Polz, H.-P. Schlenvoigt, F. Schorcht, M. B. Schwab, A. Seidel, K. Zeil, U. Schramm, M. Zepf, J. Schreiber, S. Rykovanov, and M. C. Kaluza
Ring-like spatial distribution of laser accelerated protons in the ultra-high-contrast TNSA-regime
Plasma Physics and Controlled Fusion 60, 055010 (2018)

Abstract: The spatial distribution of protons accelerated from submicron-thick plastic foil targets using multi-terawatt, frequency-doubled laser pulses with ultra-high temporal contrast has been investigated experimentally. A very stable, ring-like beam profile of the accelerated protons, oriented around the target’s normal direction has been observed. The ring’s opening angle has been found to decrease with increasing foil thicknesses. Two-dimensional particle-in-cell simulations reproduce our results indicating that the ring is formed during the expansion of the proton density distribution into the vacuum as described by the mechanism of target-normal sheath acceleration. Here—in addition to the longitudinal electric fields responsible for the forward acceleration of the protons—a lateral charge separation leads to transverse field components accelerating the protons in the lateral direction.

2017

H. Liebetrau, M. Hornung, S. Keppler, M. Hellwing, A. Kessler, F. Schorcht, J. Hein, and M. C. Kaluza
Intracavity stretcher for chirped-pulse amplification in high-power laser systems
Optics Letters 42, 326 (2017)

Abstract: We present pulse stretching with an intracavity Offner-type pulse stretcher applied to a high-energy, short-pulse laser system. The compact intracavity design, offering a tunable stretching factor, allows the pulses to be stretched to several nanoseconds and, at the same time, to be amplified to 100 μJ. The stretched pulses have been further amplified with the high-power laser system Polaris and have been recompressed to durations as short as 102 fs, reaching peak powers of 100 TW. Furthermore, the temporal intensity contrast is investigated and compared to the formerly used stretcher setup.

2016

M. Hornung, H. Liebetrau, S. Keppler, A. Kessler, M. Hellwing, F. Schorcht, G. A. Becker, M. Reuter, J. Polz, J. Körner, J. Hein, and M. C. Kaluza
54  J pulses with 18  nm bandwidth from a diode-pumped chirped-pulse amplification laser system
Optics Letters 41, 5413 (2016)

Abstract: We report on results from the fully diode-pumped chirped-pulse amplification laser system Polaris. Pulses were amplified to a maximum energy of 54.2 J before compression. These pulses have a full width at half-maximum spectral bandwidth of 18 nm centered at 1033 nm and are generated at a repetition rate of 0.02 Hz. To the best of our knowledge, these are the most energetic broadband laser pulses generated by a diode-pumped laser system so far. Due to the limited size of our vacuum compressor, only attenuated pulses could be compressed to a duration of 98 fs containing an energy of 16.7 J, which leads to a peak power of 170 TW. These pulses could be focused to a peak intensity of 1.3×1021  W/cm2. Having an ultra-high temporal contrast of 1012 with respect to amplified spontaneous emission these laser pulses are well suited for high-intensity laser–matter experiments.

H. Liebetrau, M. Hornung, S. Keppler, M. Hellwing, A. Kessler, F. Schorcht, J. Hein, and M. C. Kaluza
High contrast, 86  fs, 35  mJ pulses from a diode-pumped Yb:glass double-chirped-pulse amplification laser system
Optics Letters 41, 3006 (2016)

Abstract: We demonstrate the generation of 86 fs, 35 mJ, high-contrast laser pulses at 1030 nm with a repetition rate of 1 Hz from a diode-pumped double chirped-pulse amplification setup. The pulses exhibit a spectral bandwidth exceeding 27 nm full width at half-maximum. This could be achieved by using a laser architecture comprising two stages of chirped pulse amplification with a cross-polarized wave generation filter in between, by applying spectral shaping and by increasing the spectral hard-clip of the second stretcher. These are, to the best of our knowledge, the shortest pulses at the mJ level with ultra-high contrast generated with a diode-pumped front end at 1030 nm.

2014

H. Liebetrau, M. Hornung, A. Seidel, M. Hellwing, A. Kessler, S. Keppler, F. Schorcht, J. Hein, and M. C. Kaluza
Ultra-high contrast frontend for high peak power fs-lasers at 1030 nm
Optics Express 22, 24776 (2014)

Abstract: We present the results from a new frontend within a double-chirped pulse amplification architecture (DCPA) utilizing crossed-polarized wave generation (XPW) for generating ultra-high contrast, 150 μJ-level, femtosecond seed pulses at 1030 nm. These pulses are used in the high energy class diode-pumped laser system Polaris at the Helmholtz Institute in Jena. Within this frontend, laser pulses from a 75 MHz oscillator-pulse train are extracted at a repetition rate of 1 Hz, temporally stretched, amplified and then recompressed reaching a pulse energy of 2 mJ, a bandwidth of 12 nm and 112 fs pulse duration at a center wavelength of 1030 nm. These pulses are temporally filtered via XPW in a holographic-cut BaF2 crystal, resulting in 150 μJ pulse energy with an efficiency of 13 %. Due to this non-linear filtering, the relative intensity of the amplified spontaneous emission preceding the main pulse is suppressed to 2×10^−13. This is, to the best of our knowledge, the lowest value achieved in a high peak power laser system operating at 1030 nm center wavelength.

M. Hornung, H. Liebetrau, A. Seidel, S. Keppler, A. Kessler, J. Körner, M. Hellwing, F. Schorcht, D. Klöpfel, A. K. Arunachalam, G. A. Becker, A. Sävert, J. Polz, J. Hein, and M. C. Kaluza
The all-diode-pumped laser system POLARIS – an experimentalist’s tool generating ultra-high contrast pulses with high energy
High Power Laser Science and Engineering 2, e20 (2014)

Abstract: The development, the underlying technology and the current status of the fully diode-pumped solid-state laser system POLARIS is reviewed. Currently, the POLARIS system delivers 4 J energy, 144 fs long laser pulses with an ultra-high temporal contrast of 5×10^12 for the ASE, which is achieved using a so-called double chirped-pulse amplification scheme and cross-polarized wave generation pulse cleaning. By tightly focusing, the peak intensity exceeds 3.5×10^20 W cm^{−2}. These parameters predestine POLARIS as a scientific tool well suited for sophisticated experiments, as exemplified by presenting measurements of accelerated proton energies. Recently, an additional amplifier has been added to the laser chain. In the ramp-up phase, pulses from this amplifier are not yet compressed and have not yet reached the anticipated energy. Nevertheless, an output energy of 16.6 J has been achieved so far.

A. Kessler, M. Hornung, S. Keppler, F. Schorcht, M. Hellwing, H. Liebetrau, J. Körner, A. Sävert, M. Siebold, M. Schnepp, J. Hein, and M. C. Kaluza
16.6 J chirped femtosecond laser pulses from a diode-pumped Yb:CaF2 amplifier
Optics Letters 39, 1333 (2014)

Abstract: We report the amplification of laser pulses at a center wavelength of 1034 nm to an energy of 16.6 J from a fully diode-pumped amplifier using Yb:CaF2 as the active medium. Pumped by a total optical power of 300 kW from high-power laser diodes, a gain factor of g=6.1 was achieved in a nine-pass amplifier configuration agreeing with numerical simulations. A measured spectral bandwidth of 10 nm full width at half-maximum promises a bandwidth-limited compression of the pulses down to a duration of 150 fs. These are, to our knowledge, the most energetic laser pulses achieved from a diode-pumped chirped-pulse amplifier so far.

2013

S. Keppler, C. Wandt, M. Hornung, R. Bödefeld, A. Kessler, A. Sävert, M. Hellwing, F. Schorcht, J. Hein, and M. C. Kaluza
Multipass amplifiers of POLARIS
Proceedings of SPIE 8780, 87800I (2013)

Abstract: Advanced high intensity laser matter interaction experiments always call for optimized laser performance. In order to further enhance the POLARIS laser system, operational at the University of Jena and the Helmholtz-Institute Jena, in particular its energy, bandwidth and focusability, new amplifier technologies have been developed and are reported here. Additionally, existing sections were considerably improved. A new multi-pass amplification stage, which is able to replace two currently used ones, was developed in close collaboration with the MPQ (Garching). The new basic elements of this amplifier are well homogenized pump modules and the application of a successive imaging principle. By operating the amplifier under vacuum conditions a top hat beam profile with an output energy of up to 1.5 J per pulse is foreseen. The already implemented POLARIS amplifier A4 was further improved by adapting an advanced method for the homogenization of the multi-spot composed pump profile. The new method comprises a computer-based evolutionary algorithm which optimizes the position of the different spots regarding its individual size, shape and intensity. The latter allowed a better homogenization of the POLARIS near field profile.

M. Hornung, S. Keppler, R. Bödefeld, A. Kessler, H. Liebetrau, J. Körner, M. Hellwing, F. Schorcht, O. Jäckel, A. Sävert, J. Polz, A. K. Arunachalam, J. Hein, and M. C. Kaluza
High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS
Optics Letters 38, 718 (2013)

Abstract: We report on the first generation of high-contrast, 164 fs duration pulses from the laser system POLARIS reaching focused peak intensities in excess of 2×10^20  W/cm2. To our knowledge, this is the highest peak intensity reported so far that has been achieved with a diode-pumped, solid-state laser. Several passive contrast enhancement techniques have been specially developed and implemented, achieving a relative prepulse intensity smaller than 10^−8 at t=−30  ps before the main pulse. Furthermore a closed-loop adaptive-optics system has been installed. Together with angular chirp compensation, this method has led to a significant reduction of the focal spot size and an increase of the peak intensity.