When logged in, additional information is available in some parts of the website.

Publications by
Christoph Hahn

All publications of HI Jena

2016

C. Hahn, G. Weber, R. Märtin, S. Höfer, T. Kämpfer, and Th. Stöhlker
CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation
Review of Scientific Instruments 87, 043106 (2016)

Abstract: Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Zsensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-raypolarization direction depending on the polarization state of the incident laser pulse.

2015

B. Marx-Glowna, K. Schulze, I. Uschmann, T. Kämpfer, G. Weber, C. Hahn, H.-C. Wille, K. Schlage, R. Röhlsberger, E. Förster, Th. Stöhlker, and G. Paulus
Influence of higher harmonics of the undulator in X-ray polarimetry and crystal monochromator design
Journal of Synchrotron Radiation 22, 1151 (2015)

Abstract: The spectrum of the undulator radiation of beamline P01 at Petra III has been measured after passing a multiple reflection channel-cut polarimeter. Odd and even harmonics up to the 15th order, as well as Compton peaks which were produced by the high harmonics in the spectrum, could been measured. These additional contributions can have a tremendous influence on the performance of the polarimeter and have to be taken into account for further polarimeter designs.

G. Weber, H. Bräuning, A. Surzhykov, C. Brandau, S. Fritzsche, S. Geyer, R. E. Grisenti, S. Hagmann, C. Hahn, R. Hess, S. Hess, C. Kozhuharov, M. Kühnel, R. Märtin, N. Petridis, U. Spillmann, S. Trotsenko, D. F. A. Winters, and Th. Stöhlker
Combined linear polarization and angular distribution measurements of x-rays for precise determination of multipole-mixing in characteristic transitions of high- Z systems
Journal of Physics B: Atomic, Molecular and Optical Physics 48, 144031 (2015)

Abstract: By applying novel-type position sensitive x-ray detectors as Compton polarimeters we recently performed a study of the linear polarization of Lyman-α₁ radiation following radiative electron capture into initially bare uranium ions. It was found that a model-independent determination of the ratio of the E1 and M2 transition amplitudes, and consequently of the corresponding transition rates, is feasible by combining the linear polarization data with a measurement of the angular distribution of the emitted radiation. In this work a detailed description of the underlying experimental technique for combined measurements of the linear polarization and the angular distribution of characteristic transitions in high-Z ions is presented. Special emphasis is given to the application of two, two-dimensional position-sensitive x-ray detectors for Compton polarimetry of hard x-rays. Moreover, we demonstrate the polarimeter efficiency of such detector systems can be significantly improved if events, where the charge is spread over neighboring segments, are reconstructed to be used in the polarization analysis.

2013

C. Hahn
Energie- und polarisationssensitiver Nachweis harter Röntgenstrahlung an Hochintensitätslasern
Master thesis
Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät (2013)

Abstract: The present thesis details the extensive calibration and characterization of two CdTe-based semiconductor detectors equipped with Timepix-class readout chips, and presents first results of polarimetric measurements conducted with these sensors. The readout's Time-over-Threshold mode provides a means to measure the energy deposited in each of the 65k sensor pixels, opening the way for a compact and versatile Compton polarimeter for the high-energy X-ray regime that is commonly encountered at, e.g., laser-generated plasmas.

Since each pixel features its own dedicated set of conversion electronics, an individual calibration of every pixel is mandatory if the full potential of the energy-sensitive detection mode is to be exploited. Exposures to both gamma and X-ray fluorescence radiation were used to generate the necessary data. In addition, a range of MATLAB programs and classes was created to facilitate the lengthy analyses. The final obtainable energy resolution is on the order of 9%, with higher bias voltages providing some potential for improvement while simultaneously increasing the observed detector noise. The fraction of charge-sharing events, i.e. those that encompass multiple pixels, was found to conform with expectations, increasing with the incident photon's energy while, for a given energy, being somewhat lower at higher bias voltages.

Furthermore, a two-detector Compton polarimeter was constructed where two Timepix detectors are arranged around a passive scattering target of approximately 1 cm diameter, covering azimuthal scattering angles that differ by 90°. This setup was first tested at DESY's PETRA III accelerator. The observed stark contrast between radiation scattered parallel and perpendicular to the incident photon electric field vector confirms the setups' fitness for Compton polarimetry in the energy range of some 100 keV. By adding a Tantalum plate collimator to further restrict the scattering angle of the incident photons, the contrast between both detectors was enhanced by an additional 18%. In this configuration, the setup almost reached the contrast theoretically expected for an ideal Compton polarimeter.

2011

C. Hahn
Charakterisierung ortsauflösender Halbleiterdetektoren für harte Röntgenstrahlung
Bachelor thesis
Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät (2011)

Abstract: The present thesis details the properties of position-sensitive detectors suited for the Compton polarimetry of high-energy X-ray radiation, investigating double-sided Ge(i) and Si(Li) strip detectors as well as a CdTe-based sensor equipped with the novel Timepix detection chip.

In the case of the strip detectors, special concern was dedicated to the so-called charge sharing effect, which denotes an incident photon's charge cloud being distributed across several segments. This obviously hampers the determination of the actual interaction position, a crucial parameter for the Compton-polarimetric analysis. A set of sophisticated software routines to recover such events was developed. Using this modified analysis, the number of multiplicity-1 events reported by the Si(Li) detector was increased by about 30%, while the Ge(i) system, having a much smaller strip width, saw an increase by up to a factor of 30 at energies above 200 keV. Consequently, the number of events usable for the Compton analysis, which has to be restricted to exposures with exactly two discernible interactions, grew in a similar fashion, such that, for the Ge(i) sensor, the computed degree of polarization deviated by as much as 9% from previously obtained values. The wide-stripped Si(Li) detector, on the other hand, proved to be much less susceptible to distortions induced through charge splitting.

In addition, Timepix acquisitions made during an electron acceleration experiment conducted at the JETI laser system were evaluated. To avoid saturation of the sensor, extensive shielding and indirect exposure, utilizing a plastic body for scattering, were necessary. While the employed Time-over-Threshold mode returns a pixelwise measure for the energy deposition, neither an absolute nor inter-pixel calibration was possible. However, a clear correlation between the total output signal and the intensity reported by an electron spectrometer could be observed, confirming the Timepix sensor's general capability of energy-resolved measurements. Furthermore, electron tracks that were visible in the obtained data were used to calculate a rough estimate of the primary photon energy by comparing their extent to the predictions of the Continuous Slowing Down Approximation. This yielded initial electron energies in the MeV range, which are in good agreement with the achieved energies reported for the JETI experiment in question.