# Publications by

Birger Böning

## 2020

**Polarization-dependent high-intensity Kapitza-Dirac effect in strong laser fields**

**101**, 031401 (2020)

**Abstract:** We study the deflection of photoelectrons in intense elliptically polarized standing light waves, known as the high-intensity Kapitza-Dirac effect. In order to compute the longitudinal momentum transfer to the photoelectron in above-threshold ionization, we utilize a complete description of the quantum dynamics in the spatially dependent field of the standing light wave. We propose experimental conditions under which low-energy photoelectrons can be generated with remarkably high longitudinal momenta that can be controlled via the polarization of the standing wave. We expect that future experimental realizations will provide additional insights into the momentum transfer in intense laser-atom interactions.

**Quantum Collisions and Confinement of Atomic and Molecular Species, and Photons**

**Abstract:** We study strong-field ionization of a hydrogenic target by few-cycle Bessel pulses. In order to investigate the interplay between the carrier envelope phase (CEP) and the orbital angular momentum of a few-cycle pulse (OAM), we apply a semiclassical two-step model. In particular, we here compute and discuss photoelectron momentum distributions (PEMD) for localized atomic targets. We show how these momentum distributions are affected by the CEP and TAM of the incident pulse. In particular, we find that the OAM affects the PEMD in a similar way as the CEP, depending on the initial position of our target.

## 2019

**High harmonic generation with Laguerre-Gaussian beams**

**21**, 094001 (2019)

**Abstract:** We summarize the development of high harmonic generation (HHG) with linearly polarized Laguerre–Gaussian (LG) beams and their superpositions to explain the non-perturbative aspects of HHG. Furthermore, we show that circularly polarized extreme ultraviolet vortices with well-defined orbital angular momentum (OAM) can be generated by HHG with bicircular LG beams. We introduce photon diagrams in order to explain how to calculate the OAM and the polarization of the generated harmonics by means of simultaneous conservation of spin angular momentum and OAM. Moreover, we show how the intensity ratio of the driving fields in HHG with bicircular LG beams further enhances the generation of circularly polarized twisted attosecond pulse trains.

**Coherence control in high-order harmonic generation with Laguerre-Gaussian beams**

**100**, 013422 (2019)

**Abstract:** We investigate phase matching for high-order harmonic generation with linearly polarized Laguerre-Gaussian (LG) beams with nonzero orbital angular momentum (OAM). We compare the conditions for efficient phase matching for LG beams with those of Gaussian beams. In particular, we show how the OAM of the incident beams affects the phase-matching conditions for the short and long trajectories that arise from the saddle-point approximation of the dipole moment. Thereby we illustrate that the coherence length for the short trajectories decreases for LG beams near the focus compared to Gaussian beams, whereas efficient phase matching can be achieved before and behind the focus. Furthermore, we demonstrate that the coherence length for the long trajectory behind the focus plane can be controlled by the OAM. This paper provides a route for the experiment in order to have good coherence control to enhance the conversion efficiency for high-order harmonic generation with beams carrying OAM.

**Nondipole strong-field approximation for spatially structured laser fields**

**99**, 053404 (2019)

**Abstract:** The strong-field approximation (SFA) is widely used to theoretically describe the ionization of atoms and molecules in intense laser fields. We here propose an extension of the SFA to incorporate nondipole contributions in the interaction between the photoelectron and the driving laser field. To this end, we derive Volkov-type continuum wave functions of an electron propagating in a laser field of arbitrary spatial dependence. Based on previous work by L. Rosenberg and F. Zhou [Phys. Rev. A 47, 2146 (1993)], we show how to construct such Volkov-type solutions to the Schrödinger equation for an electron in a vector potential that can be written as an integral superposition of plane waves. These solutions are therefore not restricted to plane waves but are also appropriate to deal with more complex laser fields like twisted Bessel or Laguerre-Gaussian beams, where the magnetic field plays an important role. As an example, we compute photoelectron spectra in the above-threshold ionization of atoms with a single-mode plane-wave laser field of midinfrared wavelength. Especially, we demonstrate how peak offsets in the p_z direction can be extracted that result from the nondipole nature of the interaction. Here, we find good agreement with previous theoretical and experimental studies for circular polarization and discuss differences for linear polarization.

**Dichroism in two-color above-threshold ionization with twisted XUV beams and intense infrared laser fields**

**99**, 023403 (2019)

**Abstract:** We theoretically investigate the two-color above-threshold ionization of atoms and ions by twisted XUV Bessel and Laguerre-Gaussian (LG) beams in the presence of a strong circularly polarized near-infrared (NIR) laser field. The presence of the NIR field modifies the continuum states accessible to the photoelectron. Based on the strong-field approximation, we explore the resulting energy and angular distributions of photoelectron as a function of the beam parameters. In particular, we analyze dichroism signals that arise due to the twisted nature of the XUV beam and the helicity of the NIR field. We focus on the comparison between LG beams and Bessel beams in the paraxial approximation. Here, we find that both beams yield similar results when the paraxial regime is valid. For localized targets, the dichroism signals strongly depend on the size and position of the atoms relative to the beam axis. Moreover, the dichroism signal tends to zero when the XUV LG beam is linear polarized. Detailed computations of the dichroism are performed and discussed for the 4s valence-shell photoionization of Ca⁺ ions.

## 2018

**Above-threshold ionization by few-cycle Bessel pulses carrying orbital angular momentum**

**98**, 023407 (2018)

**Abstract:** We investigate theoretically the above-threshold ionization (ATI) of localized atomic targets by intense few-cycle Bessel pulses that carry orbital angular momentum (OAM), known also as twisted light. More specifically, we use the strong-field approximation (SFA) to compute the photoelectron energy spectra. While for plane-wave laser pulses the outgoing photoelectron is typically described by Volkov states within the SFA, no equivalent is known for an electron in a twisted laser field. Here, we therefore introduce a local dipole approximation for the (continuum) state of the photoelectron that is justified for few-cycle pulses. Based on this approximation, we demonstrate that the photoelectrons can also be emitted into the propagation direction of the pulse. When measured in propagation direction, moreover, we show that the magnitude of the ATI peaks depend on the opening angle and the (projection of) total angular momentum of the Bessel pulse.