When logged in, additional information is available in some parts of the website.

Publications by
Dr. Berit Marx-Glowna

All publications of HI Jena

2022

B. Marx-Glowna, B. Grabiger, R. Loetzsch, I. Uschmann, A. T. Schmitt, K. S. Schulze, A. Last, T. Roth, S. Antipov, H.-P. Schlenvoigt, I. Sergueev, O. Leupold, R. Roehlsberger, and G. G. Paulus
Scanning high-sensitive x-ray polarization microscopy
New Journal of Physics 24, 053051 (2022)

Abstract: We report on the realization of an extremely sensitive x-ray polarization microscope, allowing to detect tiniest polarization changes of 1 in 100 billion (10(-11)) with a mu m-size focused beam. The extreme degree of polarization purity places the most stringent requirements on the orientation of the polarizer and analyzer crystals as well as the composition and the form fidelity of the lenses, which must not exhibit any birefringence. The results show that these requirements are currently only met by polymer lenses. Highly sensitive scanning x-ray polarization microscopy thus is established as a new method. It can provide new insights in a wide range of applications ranging from quantum electrodynamics and quantum optics to x-ray spectroscopy, materials research, and laser physics.

K. Schulze, B. Grabiger, R. Loetzsch, B. Marx-Glowna, A. Schmitt, A. Garcia, W. Hippler, L. Huang, F. Karbstein, Z. Konopková, H.-P. Schlenvoigt, J.-P. Schwinkendorf, C. Strohm, T. Toncian, I. Uschmann, H.-C. Wille, U. Zastrau, R. Röhlsberger, T. Stöhlker, T. Cowan, and G. Paulus
Towards perfectly linearly polarized x-rays
Physical Review Research 4, 013220 (2022)

Abstract: In recent years, high-precision x-ray polarimeters have become a key method for the investigation of fundamental physical questions from solid-state physics to quantum optics. Here, we report on the verification of a polarization purity of better than 8×10−11 at an x-ray free-electron laser, which implies a suppression of the incoming photons to the noise level in the crossed polarizer setting. This purity provides exceptional sensitivity to tiny polarization changes and offers intriguing perspectives for fundamental tests of quantum electrodynamics.

2021

B. Marx-Glowna, I. Uschmann, K. Schulze, H. Marschner, H.-C. Wille, K. Schlage, T. Stöhlker, R. Röhlsberger, and G. Paulus
Advanced X-ray polarimeter design for nuclear resonant scattering
Journal of Synchrotron Radiation 28, 120 (2021)

Abstract: This work presents the improvements in the design and testing of polarimeters based on channel-cut crystals for nuclear resonant scattering experiments at the 14.4 keV resonance of Fe-57. By using four asymmetric reflections at asymmetry angles of alpha(1) = -28 degrees, alpha(2) = 28 degrees, alpha(3) = -28 degrees and alpha(4) = 28 degrees, the degree of polarization purity could be improved to 2.2 x 10(-9). For users, an advanced polarimeter without beam offset is now available at beamline P01 of the storage ring PETRA III.

A. T. Schmitt, Y. Joly, K. S. Schulze, B. Marx-Glowna, I. Uschmann, B. Grabiger, H. Bernhardt, R. Lötzsch, A. Juhin, J. Debray, H.-C. Wille, H. Yavaş, G. G. Paulus, and R. Röhlsberger
Disentangling x-ray dichroism and birefringence via high-purity polarimetry
Optica 8, 56 (2021)

Abstract: High-brilliance synchrotron radiation sources have opened new avenues for x-ray polarization analysis that go far beyond conventional polarimetry in the optical domain. With linear x-ray polarizers in a crossed setting, polarization extinction ratios down to 10⁻¹⁰ can be achieved. This renders the method sensitive to probe the tiniest optical anisotropies that would occur, for example, in strong-field quantum electrodynamics due to vacuum birefringence and dichroism. Here we show that high-purity polarimetry can be employed to reveal electronic anisotropies in condensed matter systems with utmost sensitivity and spectral resolution. Taking CuO and La₂CuO₄ as benchmark systems, we present a full characterization of the polarization changes across the Cu K-absorption edge and their separation into dichroic and birefringent contributions. At diffraction-limited synchrotron radiation sources and x-ray lasers, where polarization extinction ratios of 10⁻¹² can be achieved, our method has the potential to assess birefringence and dichroism of the quantum vacuum in extreme electromagnetic fields.

L. Wollenweber, T. R. Preston, A. Descamps, V. Cerantola, A. Comley, J. H. Eggert, L. B. Fletcher, G. Geloni, D. O. Gericke, S. H. Glenzer, S. Goede, J. Hastings, O. S. Humphries, A. Jenei, O. Karnbach, Z. Konopkova, R. Lötzsch, B. Marx-Glowna, E. E. McBride, D. McGonegle, G. Monaco, B. K. Ofori-Okai, C. A. J. Palmer, C. Plückthun, R. Redmer, C. Strohm, I. Thorpe, T. Tschentscher, I. Uschmann, J. S. Wark, T. G. White, K. Appel, G. Gregori, and U. Zastrau
High-resolution inelastic x-ray scattering at the high energy density scientific instrument at the Free-Electron Laser
Review of Scientific Instruments 92, 013101 (2021)

Abstract: We introduce a setup to measure high-resolution inelastic x-ray scattering at the High Energy Density scientific instrument at the European X-Ray Free-Electron Laser (XFEL). The setup uses the Si (533) reflection in a channel-cut monochromator and three spherical diced analyzer crystals in near-backscattering geometry to reach a high spectral resolution. An energy resolution of 44 meV is demonstrated for the experimental setup, close to the theoretically achievable minimum resolution. The analyzer crystals and detector are mounted on a curved-rail system, allowing quick and reliable changes in scattering angle without breaking vacuum. The entire setup is designed for operation at 10 Hz, the same repetition rate as the high-power lasers available at the instrument and the fundamental repetition rate of the European XFEL. Among other measurements, it is envisioned that this setup will allow studies of the dynamics of highly transient laser generated states of matter.

2020

B. Grabiger, B. Marx-Glowna, I. Uschmann, R. Loetzsch, G. Paulus, and K. Schulze
A highly sensitive imaging polarimeter in the x-ray regime
Applied Physics Letters 117, 201102 (2020)

Abstract: We report on the development of a highly sensitive imaging polarimeter that allows for the investigation of polarization changing properties of materials in the x-ray regime. By combining a microfocus rotating anode, collimating multilayer mirrors, and two germanium polarizer crystals, we achieved a polarization purity of the two orthogonal linear polarization states of 8 × 10−8. This enables the detection of an ellipticity on the same order or a rotation of the polarization plane of 6 arcsec. The high sensitivity combined with the imaging techniques allows us to study the microcrystalline structure of materials. As an example, we investigated beryllium sheets of different grades, which are commonly used for fabricating x-ray lenses, with a spatial resolution of 200 μm, and observed a strong degradation of the polarization purity due to the polycrystalline nature of beryllium. This makes x-ray lenses made of beryllium unsuitable for imaging polarimeter with higher spatial resolution. The results are important for the development of x-ray optical instruments that combine high spatial resolution and high sensitivity to polarization.

H. Bernhardt, A. Schmitt, B. Grabiger, B. Marx-Glowna, R. Loetzsch, H.-C. Wille, D. Bessas, A. Chumakov, R. Rüffer, R. Röhlsberger, T. Stöhlker, I. Uschmann, G. Paulus, and K. Schulze
Ultra-high precision x-ray polarimetry with artificial diamond channel cuts at the beam divergence limit
Physical Review Research 2, 023365 (2020)

Abstract: We report on the use of synthetic single-crystal diamonds for high definition x-ray polarimetry. The diamonds are precision mounted to form artificial channel-cut crystals (ACCs). Each ACC supports four consecutive reflections with a scattering angle 2ΘB of 90°. We achieved a polarization purity of 3.0×10−10 at beamline ID18 of the European Synchrotron Radiation Facility (ESRF). When the x-ray beam's horizontal divergence was reduced through additional collimation from 17 to 8.4μrad, the polarization purity improved to 1.4×10−10. Precision x-ray polarimetry thus has reached the limit, where the purity is determined by the divergence of the beam. In particular, this result is important for polarimetry at fourth generation x-ray sources, which provide diffraction-limited x-ray beams. The sensitivity expected as a consequence of the present work will pave the way for exploring new physics such as the investigation of vacuum birefringence.

2017

B. Marx-Glowna
Hochauflösende Röntgenpolarimetrie
Doctoral thesis
Friedrich-Schiller-Universität Jena, Physikalisch-Astronomische Fakultät (2017)

Abstract: Polarimetry has a long history with versatile applications in chemistry and pharmacy in the visible spectral range. In the field of X-ray radiation, the interest in high-resolution polarimeters has only increased in recent years. This work is based on a project aiming to observe the vacuum birefringence in an ultra-intense laser field.
The present dissertation describes the development of a precision polarimeter based on multiple reflections at a Bragg angle of 45° in silicon channel-cut crystals. A degree of polarization purity of 10^-10 could be achieved. This improves the best x-ray polarimeters to date by more than two orders of magnitude. In this thesis, experimental and theoretical factors are investigated, which currently limit the degree of polarization purity of precision polarimeters, such as multiple-beam cases, surface treatment of the crystals and source parameters. A new methodology of thin crystals is presented with which the degree of polarization purity can be improved in the future. The high purity of the precision polarimeter allows numerous new applications in nuclear resonant scattering and quantum optics as well as the characterization of X-ray sources of the 3rd and 4th generation.

2016

H. Bernhardt, B. Marx-Glowna, K. Schulze, B. Grabiger, J. Haber, C. Detlefs, R. Lötzsch, T. Kämpfer, R. Röhlsberger, E. Förster, Th. Stöhlker, I. Uschmann, and G. G. Paulus
High purity x-ray polarimetry with single-crystal diamonds
Applied Physics Letters 109, 121106 (2016)

Abstract: We report on the use of synthetic single-crystal diamonds for high purity x-ray polarimetry to improve the polarization purity of present-day x-ray polarimeters. The polarimeter setup consists of a polarizer and an analyzer, each based on two parallel diamond crystals used at a Bragg angle close to 45°. The experiment was performed using one (400) Bragg reflection on each diamond crystal and synchrotron undulator radiation at an x-ray energy of 9838.75 eV. A polarization purity of 8.9 × 10−10 was measured at the European Synchrotron Radiation Facility, which is the best value reported for two-reflection polarizer/analyzer setups. This result is encouraging and is a first step to improve the resolution of x-ray polarimeters further by using diamond crystal polarizers and analyzers with four or six consecutive reflections.

2015

B. Marx-Glowna, K. Schulze, I. Uschmann, T. Kämpfer, G. Weber, C. Hahn, H.-C. Wille, K. Schlage, R. Röhlsberger, E. Förster, Th. Stöhlker, and G. Paulus
Influence of higher harmonics of the undulator in X-ray polarimetry and crystal monochromator design
Journal of Synchrotron Radiation 22, 1151 (2015)

Abstract: The spectrum of the undulator radiation of beamline P01 at Petra III has been measured after passing a multiple reflection channel-cut polarimeter. Odd and even harmonics up to the 15th order, as well as Compton peaks which were produced by the high harmonics in the spectrum, could been measured. These additional contributions can have a tremendous influence on the performance of the polarimeter and have to be taken into account for further polarimeter designs.

2014

B. Marx, K. S. Schulze, I. Uschmann, T. Kämpfer, O. Wehrhan, H. C. Wille, K. Schlage, R. Röhlsberger, E. Weckert, E. Förster, Th. Stöhlker, and G. G. Paulus
High precision measurement of undulator polarization in the regime of hard x-rays
Applied Physics Letters 105, 024103 (2014)

Abstract: We have measured the polarization purity of undulator radiation at 12.9 keV, with hitherto unachievable precision. We could measure a polarization purity of 1.8 × 10−4 by using a silicon channel-cut crystal with six Bragg reflections at 45° as analyzer.

K. S. Schulze, B. Marx, I. Uschmann, E. Förster, Th. Stöhlker, and G. G. Paulus
Determination of the polarization state of x rays with the help of anomalous transmission
Applied Physics Letters 104, 151110 (2014)

Abstract: Besides intensity and direction, the polarization of an electromagnetic wave provides characteristic information on the crossed medium. Here, we present two methods for the determination of the polarization state of x rays by polarizers based on anomalous transmission (Borrmann effect). Using a polarizer-analyzer setup, we have measured a polarization purity of less than 1.5 × 10^−5, three orders of magnitude better than obtained in earlier work. Using the analyzer crystal in multiple-beam case with slightly detuned azimuth, we show how the first three Stokes parameters can be determined with a single angular scan. Thus, polarization analyzers based on anomalous transmission make it possible to detect changes of the polarization in a range from degrees down to arcseconds.

2013

K. Heeg, H.-C. Wille, K. Schlage, T. Guryeva, D. Schumacher, I. Uschmann, K. S. Schulze, B. Marx, T. Kämpfer, G. Paulus, R. Röhlsberger, and J. Evers
Vacuum-Assisted Generation and Control of Atomic Coherences at X-Ray Energies
Physical Review Letters 111, 073601 (2013)

Abstract: The control of light-matter interaction at the quantum level usually requires coherent laser fields. But already an exchange of virtual photons with the electromagnetic vacuum field alone can lead to quantum coherences, which subsequently suppress spontaneous emission. We demonstrate such spontaneously generated coherences (SGC) in a large ensemble of nuclei operating in the x-ray regime, resonantly coupled to a common cavity environment. The observed SGC originates from two fundamentally different mechanisms related to cooperative emission and magnetically controlled anisotropy of the cavity vacuum. This approach opens new perspectives for quantum control, quantum state engineering and simulation of quantum many-body physics in an essentially decoherence-free setting.

B. Marx, K. S. Schulze, I. Uschmann, T. Kämpfer, R. Lötzsch, O. Wehrhan, W. Wagner, C. Detlefs, T. Roth, J. Härtwig, E. Förster, Th. Stöhlker, and G. G. Paulus
High-Precision X-Ray Polarimetry
Physical Review Letters 110, 254801 (2013)

Abstract: The polarization purity of 6.457- and 12.914-keV x rays has been improved to the level of 2.4×10-10 and 5.7×10-10. The polarizers are channel-cut silicon crystals using six 90° reflections. Their performance and possible applications are demonstrated in the measurement of the optical activity of a sucrose solution.

2011

B. Marx, I. Uschmann, S. Höfer, R. Lötzsch, O. Wehrhan, E. Förster, M. C. Kaluza, T. Stöhlker, H. Gies, C. Detlefs, T. Roth, J. Hartwig, and G. G. Paulus
Determination of high-purity polarization state of X-rays
Optics Communications 284, 915 (2011)

Abstract: We report on the measurement of the highest purity of polarization of X-rays to date. The measurements are performed by combining a brilliant undulator source with an X-ray polarimeter. The polarimeter is composed of a polarizer and an analyzer, each based on four reflections at channel-cut crystals with a Bragg angle very close to 45°. Experiments were performed at three different X-ray energies, using different Bragg reflections: Si(400) at 6457.0 eV, Si(444) at 11,183.8 eV, and Si(800) at 12,914.0 eV. At 6 keV a polarization purity of 1.5 × 10^{-9} is achieved. This is an improvement by more than two orders of magnitude as compared to previously reported values. The polarization purity decreases slightly for shorter X-ray wavelengths. The sensitivity of the polarimeter is discussed with respect to a proposed experiment that aims at the detection of the birefringence of vacuum induced by super-strong laser fields.