Nach der Anmeldung stehen Ihnen an einigen Stellen der Seite erweiterte Informationen zur Verfügung.

Publikationen von
Yinyu Zhang

Alle Publikationen des HI Jena


N. Dimitrov, M. Zhekova, Y. Zhang, G. Paulus, and A. Dreischuh
Background-free femtosecond autocorrelation in collinearly-aligned inverted field geometry using optical vortices
OPTICS COMMUNICATIONS 504, 127493 (2022)

Abstract: Among the existing techniques for measuring ultrashort pulse durations, the two classical second-order methods - interferometric and the background-free autocorrelation - are distinguished due to their simplicity and reliability. In this work we report on a technique that allows realignment-free switching between these two modes of autocorrelation. It is based on a collinearly aligned inverted-field interferometer and an optical vortex plate that is added/removed in front of the device in order to switch between both modes. Experiment and theoretical modeling confirm the effectiveness of the technique down to the 10-fs range.


Y. Zhang, C. L. Zhong, S. P. Zhu, X. T. He, M. Zepf, and B. Qiao
Obtaining Intense Attosecond Pulses in the Far Field from Relativistic Laser-Plasma Interactions
Physical Review Applied 16, 024042 (2021)

Abstract: In this paper, we show that the Gouy phase shift plays a key role in the far-field waveform evolution of the reflected harmonic radiations from plasma surfaces driven by a relativistic Gaussian laser. With a proper adjustment of laser focal position away from the plasma surface, the inherent separations between the peaks of different harmonic carrier waves as well as the fundamental wave due to different wavelengths can be cleared away when they propagate from near to far field, since they experience the same Gouy phase shift of pi/2. Using this method, intense attosecond pulses can be obtained in the far field with no need of any spectral filters. Three-dimensional particle-in-cell simulations show that far-field attosecond pulses with intensity of 4 x 1015 W/cm2 (2.56 x 1017 W/sr; 65 times increase) and duration of 76 as (50% decrease) can be obtained by lasers at intensities of 1021 W/cm2. Such brilliant pulses with fully reserved spectra significantly benefit applications in attosecond science.

L. Stoyanov, Y. Zhang, A. Dreischuh, and G. Paulus
Long-range quasi-non-diffracting Gauss-Bessel beams in a few-cycle laser field
Optics Express 29, 10997 (2021)

Abstract: Many applications ranging from nonlinear optics to material processing would benefit from pulsed ultrashort (quasi-)non-diffracting Gauss-Bessel beams (GBBs). Here we demonstrate a straightforward yet efficient method for generating such zeroth- and first-order GBBs using a single reflective spatial light modulator. Even in the sub-8-fs range there are no noticeable consequences for the measured pulse duration. The only effect is a weak coloring of the outer-lying satellite rings of the beams due to the spectrum spanning over more than 300 nm. The obtained beams have diffraction half-angles below 40 mu rad and reach propagation distances in excess of 1.5 m.

M. Kübel, P. Wustelt, Y. Zhang, S. Skruszewicz, D. Hoff, D. Würzler, H. Kang, D. Zille, D. Adolph, G. Paulus, A. Sayler, M. Dumergue, A. Nayak, R. Flender, L. Haizer, M. Kurucz, B. Kiss, S. Kühn, B. Fetić, and D. Milošević
High-Order Phase-Dependent Asymmetry in the Above-Threshold Ionization Plateau
Physical Review Letters 126, 113201 (2021)

Abstract: Above-threshold ionization spectra from cesium are measured as a function of the carrier-envelope phase (CEP) using laser pulses centered at 3.1  μm wavelength. The directional asymmetry in the energy spectra of backscattered electrons oscillates three times, rather than once, as the CEP is changed from 0 to 2π. Using the improved strong-field approximation, we show that the unusual behavior arises from the interference of few quantum orbits. We discuss the conditions for observing the high-order CEP dependence, and draw an analogy with time-domain holography with electron wave packets.


Y. Xing, J. Glorius, L. Varga, L. Bott, C. Brandau, B. Brückner, R. Chen, X. Chen, S. Dababneh, T. Davinson, P. Erbacher, S. Fiebiger, T. Gaßner, K. Göbel, M. Groothuis, A. Gumberidze, G. Gyürky, M. Heil, R. Hess, R. Hensch, P. Hillmann, P.-M. Hillenbrand, O. Hinrichs, B. Jurado, T. Kausch, A. Khodaparast, T. Kisselbach, N. Klapper, C. Kozhuharov, D. Kurtulgil, G. Lane, C. Langer, C. Lederer-Woods, M. Lestinsky, S. Litvinov, Y. Litvinov, B. Löher, N. Petridis, U. Popp, M. Reed, R. Reifarth, M. Sanjari, H. Simon, Z. Slavkovská, U. Spillmann, M. Steck, T. Stöhlker, J. Stumm, T. Szücs, T. Nguyen, A. Zadeh, B. Thomas, S. Torilov, H. Törnqvist, C. Trageser, S. Trotsenko, M. Volknandt, M. Wang, M. Weigand, C. Wolf, P. Woods, Y. Zhang, and X. Zhou
Determination of luminosity for in-ring reactions: A new approach for the low-energy domain
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 982, 164367 (2020)

Abstract: Luminosity is a measure of the colliding frequency between beam and target and it is a crucial parameter for the measurement of absolute values, such as reaction cross sections. In this paper, we make use of experimental data from the ESR storage ring to demonstrate that the luminosity can be precisely determined by modelling the measured Rutherford scattering distribution. The obtained results are in good agreement with an independent measurement based on the x-ray normalization method. Our new method provides an alternative way to precisely measure the luminosity in low-energy stored-beam configurations. This can be of great value in particular in dedicated low-energy storage rings where established methods are difficult or impossible to apply.

X. Xu, Y. Zhang, H. Zhang, H. Lu, W. Zhou, C. Zhou, B. Dromey, S. Zhu, M. Zepf, X. He, and B. Qiao
Production of 100-TW single attosecond x-ray pulse
Optica 7, 355 (2020)

Abstract: Attosecond light sources have provided insight into the fastest atomic-scale electronic dynamics. True attosecond-pump–attosecond-probe experiments require a single attosecond pulse at high intensity and large photon energy, a challenge that has yet to be conquered. Here we show 100-TW single attosecond x-ray pulses with unprecedented intensity of 1021 W/cm2 and duration 8.0 as can be produced by intense laser irradiation of a capacitor-nanofoil target composed of two separate nanofoils. In the interaction, a strong electrostatic potential develops between the two foils, which drags electrons out of the second foil and piles them up in vacuum, forming an ultradense relativistic electron nanobunch. This nanobunch reaches both high density and high energy in only half a laser cycle and smears out in others, resulting in coherent synchrotron emission of a single, intense attosecond pulse. Such a pulse enables the capture and control of electron motion at the picometer–attosecond scale.

J. Wang, V. Bulanov, M. Chen, B. Lei, Y. Zhang, R. Zagidullin, V. Zorina, W. Yu, Y. Leng, R. Li, M. Zepf, and S. Rykovanov
Relativistic slingshot: A source for single circularly polarized attosecond x-ray pulses
Physical Review E 102, 061201 (2020)

Abstract: We propose a mechanism to generate a single intense circularly polarized attosecond x-ray pulse from the interaction of a circularly polarized relativistic few-cycle laser pulse with an ultrathin foil at normal incidence. Analytical modeling and particle-in-cell simulation demonstrate that a huge charge-separation field can be produced when all the electrons are displaced from the target by the incident laser, resulting in a high-quality relativistic electron mirror that propagates against the tail of the laser pulse. The latter is efficiently reflected as well as compressed into an attosecond pulse that is also circularly polarized.

R. Hollinger, D. Hoff, P. Wustelt, S. Skruszewicz, Y. Zhang, H. Kang, D. Würzler, T. Jungnickel, M. Dumergue, A. Nayak, R. Flender, L. Haizer, M. Kurucz, B. Kiss, S. Kühn, E. Cormier, C. Spielmann, G. G. Paulus, P. Tzallas, and M. Kübel
Carrier-envelope-phase measurement of few-cycle mid-infrared laser pulses using high harmonic generation in ZnO
Optics Express 28, 7314 (2020)

Abstract: High-harmonic generation (HHG) in crystals offers a simple, affordable and easily accessible route to carrier-envelope phase (CEP) measurements, which scales favorably towards longer wavelengths. We present measurements of HHG in ZnO using few-cycle pulses at 3.1 µm. Thanks to the broad bandwidth of the driving laser pulses, spectral overlap between adjacent harmonic orders is achieved. The resulting spectral interference pattern provides access to the relative harmonic phase, and hence, the CEP.

D. Würzler, S. Skruszewicz, A. M. Sayler, D. Zille, M. Möller, P. Wustelt, Y. Zhang, J. Tiggesbäumker, and G. G. Paulus
Accurate retrieval of ionization times by means of the phase-of-the-phase spectroscopy, and its limits
Physical Review A 101, 033416 (2020)

Abstract: By applying recently introduced, phase-of-the-phase spectroscopy [S. Skruszewicz et al., Phys. Rev. Lett. 115, 043001 (2015)], we analyze the phase-dependent photoelectron signal from Xe ionized in intense, parallel, two-color (1800 nm and 900 nm) laser fields. With such a field configuration, tuning of the relative phase between the ionizing, ω , and the perturbative, 2ω, field results in a modulation of the ionization rate, as well as modifications of the trajectories of electrons propagating in the laser-dressed continuum. Based on a semiclassical model, we confirm that phase dependencies, due to the perturbation of the ionization rate, encode the ionization times of the electrons. Here, using the fork structure, a well-known feature originating from well-defined dynamics allows us to distinguish between electrons ionized within distinct time windows. However, due to the simultaneous perturbation of the electron trajectories, the assignment of the ionization times can be distorted by up to 80 as, i.e., a 10° phase shift, which is independent of the degree of the perturbation.

Y. Zhang, D. Zille, D. Hoff, P. Wustelt, D. Würzler, M. Möller, A. M. Sayler, and G. Paulus
Observing the Importance of the Phase-Volume Effect for Few-Cycle Light-Matter Interactions
Physical Review Letters 124, 133202 (2020)

Abstract: The spatially dependent phase distribution of focused few-cycle pulses, i.e., the focal phase, is much more complex than the well-known Gouy phase of monochromatic beams. As the focal phase is imprinted on the carrier-envelope phase (CEP), for accurate modeling and interpretation of CEP-dependent few-cycle laser-matter interactions, both the coupled spatially dependent phase and intensity distributions must be taken into account. In this Letter, we demonstrate the significance of the focal phase effect via comparison of measurements and simulations of CEP-dependent photoelectron spectra. Moreover, we demonstrate the impact of this effect on few-cycle light-matter interactions as a function of their nonlinear intensity dependence to answer the general question: if, when, and how much should one be concerned about the focal phase?