Nach der Anmeldung stehen Ihnen an einigen Stellen der Seite erweiterte Informationen zur Verfügung.

Publikationen von
Prof. Dr. Thomas Cowan

Alle Publikationen des HI Jena


K. Schulze, B. Grabiger, R. Loetzsch, B. Marx-Glowna, A. Schmitt, A. Garcia, W. Hippler, L. Huang, F. Karbstein, Z. Konopková, H.-P. Schlenvoigt, J.-P. Schwinkendorf, C. Strohm, T. Toncian, I. Uschmann, H.-C. Wille, U. Zastrau, R. Röhlsberger, T. Stöhlker, T. Cowan, and G. Paulus
Towards perfectly linearly polarized x-rays
Physical Review Research 4, 013220 (2022)

Abstract: In recent years, high-precision x-ray polarimeters have become a key method for the investigation of fundamental physical questions from solid-state physics to quantum optics. Here, we report on the verification of a polarization purity of better than 8×10−11 at an x-ray free-electron laser, which implies a suppression of the incoming photons to the noise level in the crossed polarizer setting. This purity provides exceptional sensitivity to tiny polarization changes and offers intriguing perspectives for fundamental tests of quantum electrodynamics.


O. Forstner, D. Bemmerer, T. Cowan, R. Dressler, A. Junghans, D. Schumann, T. Stöhlker, T. Szücs, A. Wagner, and K. Zuber
Opportunities for measurements of astrophysical-relevant alpha-capture reaction rates at CRYRING@ESR
X-Ray Spectrometry 49, 129 (2020)

Abstract: The heavy-ion storage ring CRYRING@ESR has recently been installed and commissioned at GSI as one of the first installations of the upcoming Facility for Antiproton and Ion Research (FAIR). It is designed to store highly charged ions in the energy range between 300?keV/u and about 10?MeV/u. It will incorporate a gas-jet target providing high-density jets of, among other gases, hydrogen and helium. This will allow to study alpha-capture reaction rates of astrophysical interest in the energy range of the Gamow window for core-collapse supernovae. Special interest comes from the long-lived radio-isotope 44Ti (t1/2?=?58.9?years), which is supposed to be produced in the alpha-rich freeze-out during such an event. The nucleosynthesis of this isotope is of great interest, as the amount of material produced can be estimated by direct observation in remnants of recent supernovae. The disagreements between the observations and the estimations from astrophysical models show the need of more experimental data for the production and consumption reactions in the energy range of a core-collapse supernova. In this article, we will describe the proposed method of injecting beams of 44Ti into CRYRING@ESR and performing the actual reaction rate measurements.


N. J. Hartley, S. Brown, T. E. Cowan, E. Cunningham, T. Döppner, R. W. Falcone, L. B. Fletcher, S. Frydrych, E. Galtier, E. J. Gamboa, A. L. Garcia, D. O. Gericke, S. H. Glenzer, E. Granados, P. A. Heimann, H. J. Lee, M. J. MacDonald, A. J. MacKinnon, E. E. McBride, I. Nam, P. Neumayer, A. Pak, A. Pelka, I. Prencipe, A. Ravasio, M. Rödel, K. Rohatsch, A. M. Saunders, M. Schölmerich, M. Schörner, A. K. Schuster, P. Sun, T. v. Driel, J. Vorberger, and D. Kraus
Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
Scientific Reports 9, 4196 (2019)

Abstract: We investigated the high-pressure behavior of polyethylene (CH2) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure, from which we infer the presence of significant covalent bonding. The A2/m structure which we observe has previously been seen at significantly lower pressures, and the equation of state measured agrees with our findings. This result appears to contrast with recent data from shock-compressed polystyrene (CH) at higher temperatures, which demonstrated demixing and recrystallization into a diamond lattice, implying the breaking of the original chemical bonds. As such chemical processes have significant implications for the structure and energy transfer within ice giants, our results highlight the need for a deeper understanding of the chemistry of high pressure hydrocarbons, and the importance of better constraining planetary temperature profiles.


L. Obst-Huebl, T. Ziegler, F.-E. Brack, J. Branco, M. Bussmann, T. E. Cowan, C. B. Curry, F. Fiuza, M. Garten, M. Gauthier, S. Göde, S. H. Glenzer, A. Huebl, A. Irman, J. B. Kim, T. Kluge, S. D. Kraft, F. Kroll, J. Metzkes-Ng, R. Pausch, I. Prencipe, M. Rehwald, C. Rödel, H.-P. Schlenvoigt, U. Schramm, and K. Zeil
All-optical structuring of laser-driven proton beam profiles
Nature Communications 9, 5292 (2018)

Abstract: Extreme field gradients intrinsic to relativistic laser-interactions with thin solid targets enable compact MeV proton accelerators with unique bunch characteristics. Yet, direct control of the proton beam profile is usually not possible. Here we present a readily applicable all-optical approach to imprint detailed spatial information from the driving laser pulse onto the proton bunch. In a series of experiments, counter-intuitively, the spatial profile of the energetic proton bunch was found to exhibit identical structures as the fraction of the laser pulse passing around a target of limited size. Such information transfer between the laser pulse and the naturally delayed proton bunch is attributed to the formation of quasi-static electric fields in the beam path by ionization of residual gas. Essentially acting as a programmable memory, these fields provide access to a higher level of proton beam manipulation.

L. Obst, J. Metzkes-Ng, S. Bock, G. E. Cochran, T. E. Cowan, T. Oksenhendler, P. L. Poole, I. Prencipe, M. Rehwald, C. Rödel, H.-P. Schlenvoigt, U. Schramm, D. W. Schumacher, T. Ziegler, and K. Zeil
On-shot characterization of single plasma mirror temporal contrast improvement
Plasma Physics and Controlled Fusion 60, 054007 (2018)

Abstract: We report on the setup and commissioning of a compact recollimating single plasma mirror (PM) for temporal contrast enhancement at the Draco 150 TW laser during laser-proton acceleration experiments. The temporal contrast with and without PM is characterized single-shot by means of self-referenced spectral interferometry with extended time excursion at unprecedented dynamic and temporal range. This allows for the first single-shot measurement of the PM trigger point, which is interesting for the quantitative investigation of the complex pre-plasma formation process at the surface of the target used for proton acceleration. As a demonstration of high contrast laser plasma interaction we present proton acceleration results with ultra-thin liquid crystal targets of ~ 1 μm down to 10 nm thickness. Focus scans of different target thicknesses show that highest proton energies are reached for the thinnest targets at best focus. This indicates that the contrast enhancement is effective such that the acceleration process is not limited by target pre-expansion induced by laser light preceding the main laser pulse.


S. Busold, D. Schumacher, C. Brabetz, D. Jahn, F. Kroll, O. Deppert, U. Schramm, T. Cowan, A. Blazevic, V. Bagnoud, and M. Roth
Towards highest peak intensities for ultra-short MeV-range ion bunches
Scientific Reports 5, 1 (2015)

Abstract: A laser-driven, multi-MeV-range ion beamline has been installed at the GSI Helmholtz center for heavy ion research. The high-power laser PHELIX drives the very short (picosecond) ion acceleration on μm scale, with energies ranging up to 28.4 MeV for protons in a continuous spectrum. The necessary beam shaping behind the source is accomplished by applying magnetic ion lenses like solenoids and quadrupoles and a radiofrequency cavity. Based on the unique beam properties from the laser-driven source, high-current single bunches could be produced and characterized in a recent experiment: At a central energy of 7.8MeV, up to 5×10^8 protons could be re-focused in time to a FWHM bunch length of τ=(462±40) ps via phase focusing. The bunches show a moderate energy spread between 10% and 15% (ΔE/E0 at FWHM) and are available at 6m distance to the source und thus separated from the harsh laser-matter interaction environment. These successful experiments represent the basis for developing novel laser-driven ion beamlines and accessing highest peak intensities for ultra-short MeV-range ion bunches.

C. Brabetz, S. Busold, T. Cowan, O. Deppert, D. Jahn, O. Kester, M. Roth, D. Schumacher, and V. Bagnoud
Laser-driven ion acceleration with hollow laser beams
Physics of Plasmas 22, 013105 (2015)

Abstract: The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10^18 W cm^−2 to 10^20 W cm^−2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.


S. Busold, A. Almomani, V. Bagnoud, W. Barth, S. Bedacht, A. Blažević, O. Boine-Frankenheim, C. Brabetz, T. Burris-Mog, T. Cowan, O. Deppert, M. Droba, H. Eickhoff, U. Eisenbarth, K. Harres, G. Hoffmeister, I. Hofmann, O. Jäckel, R. Jäger, M. Joost, S. Kraft, F. Kroll, M. Kaluza, O. Kester, Z. Lecz, T. Merz, F. Nürnberg, H. Al-Omari, A. Orzhekhovskaya, G. Paulus, J. Polz, U. Ratzinger, M. Roth, G. Schaumann, P. Schmidt, U. Schramm, G. Schreiber, D. Schumacher, T. Stöhlker, A. Tauschwitz, W. Vinzenz, F. Wagner, S. Yaramyshev, and B. Zielbauer
Shaping laser accelerated ions for future applications – The LIGHT collaboration
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 740, 94 (2014)

Abstract: Abstract The generation of intense ion beams from high-intensity laser-generated plasmas has been the focus of research for the last decade. In the LIGHT collaboration the expertise of heavy ion accelerator scientists and laser and plasma physicists has been combined to investigate the prospect of merging these ion beams with conventional accelerator technology and exploring the possibilities of future applications. We report about the goals and first results of the LIGHT collaboration to generate, handle and transport laser driven ion beams. This effort constitutes an important step in research for next generation accelerator technologies.


S. Busold, D. Schumacher, O. Deppert, C. Brabetz, S. Frydrych, F. Kroll, M. Joost, H. Al-Omari, A. Blazevic, B. Zielbauer, I. Hofmann, V. Bagnoud, T. E. Cowan, and M. Roth
Focusing and transport of high-intensity multi-MeV proton bunches from a compact laser-driven source
Physical Review ST - Accelerators and Beams 16, 101302 (2013)

Abstract: Laser ion acceleration provides for compact, high-intensity ion sources in the multi-MeV range. Using a pulsed high-field solenoid, for the first time high-intensity laser-accelerated proton bunches could be selected from the continuous exponential spectrum and delivered to large distances, containing more than 109 particles in a narrow energy interval around a central energy of 9.4 MeV and showing ≤ 30  mrad envelope divergence. The bunches of only a few nanoseconds bunch duration were characterized 2.2 m behind the laser-plasma source with respect to arrival time, energy width, and intensity as well as spatial and temporal bunch profile.

A. Jochmann, A. Irman, M. Bussmann, J. P. Couperus, T. E. Cowan, A. D. Debus, M. Kuntzsch, K. W. D. Ledingham, U. Lehnert, R. Sauerbrey, H. P. Schlenvoigt, D. Seipt, Th. Stöhlker, D. B. Thorn, S. Trotsenko, A. Wagner, and U. Schramm
High Resolution Energy-Angle Correlation Measurement of Hard X Rays from Laser-Thomson Backscattering
Physical Review Letters 111, 114803 (2013)

Abstract: Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.