Publikationen von
Sarper Salman
Alle Publikationen des HI Jena
2022
Abstract: We demonstrate a 41.6 MHz, 1.3 ps, 140 pJ Ho:fiber oscillator using a nonlinear amplifying loop mirror (NALM) as saturable absorber. The oscillator is constructed entirely with polarization-maintaining (PM) fibers, is tunable with a center wavelength between 2035 nm and 2075 nm, and can be synchronized to an external RF reference. For our application of Ho:YLF amplifier seeding for dielectric electron acceleration, the laser is tuned to 2050 nm and synchronized to a stable RF reference with 45 fs rms timing jitter in the integration interval [10 Hz, 1 MHz]. We show long term synchronized operation and characterize the relative intensity noise (RIN) and timing jitter of the oscillator for two different Tm-fiber pump lasers.
2021
Abstract: We demonstrate an all-PM fiber integrated femtosecond Yb NALM oscillator with 88 fs compressed pulse duration and sub-fs free-running timing jitter [25 kHz to 5 MHz].
Abstract: We demonstrate a 41.6 MHz, 1.3 ps, 140 pJ Ho:fiber oscillator centered at 2050 nm for seeding Ho:YLF amplifiers. RIN and timing jitter of the oscillator are characterized while comparing two commercial Tm pump lasers.
2020
Abstract: We present a flexible all-polarization-maintaining (PM) mode-locked ytterbium (Yb):fiber laser based on a nonlinear amplifying loop mirror (NALM). In addition to providing detailed design considerations, we discuss the different operation regimes accessible by this versatile laser architecture and experimentally analyze five representative mode-locking states. These five states were obtained in a 78-MHz configuration at different intracavity group delay dispersion (GDD) values ranging from anomalous (-0.035 ps2) to normal (+0.015 ps2). We put a particular focus on the characterization of the intensity noise as well as the free-running linewidth of the carrier-envelope-offset (CEO) frequency as a function of the different operation regimes. We observe that operation points far from the spontaneous emission peak of Yb (~1030 nm) and close to zero intracavity dispersion can be found, where the influence of pump noise is strongly suppressed. For such an operation point, we show that a CEO linewidth of less than 10-kHz at 1 s integration can be obtained without any active stabilization.
Abstract: We present a flexible figure-9 Yb: fiber-laser and investigate the impact of intra-cavity group delay dispersion on amplitude/phase noise. We show that the free-running carrier-envelope-offset frequency short-term linewidth can range from several MHz to <10 kHz.
2019
Abstract: We demonstrate a low-noise carrier-envelope-offset frequency stabilized all-PM Yb:fiber oscillator. Two different stabilization methods lead to sub 200 mrad integrated fo phase noise (10 Hz to 1 MHz), suitable for comb spectroscopy applications.