Nach der Anmeldung stehen Ihnen an einigen Stellen der Seite erweiterte Informationen zur Verfügung.

Publikationen von
Dr. Oliver Forstner

Alle Publikationen des HI Jena

2022

B. Zhu, A. Gumberidze, T. Over, G. Weber, Z. Andelkovic, A. Bräuning-Demian, R. J. Chen, D. Dmytriiev, O. Forstner, C. Hahn, F. Herfurth, M. O. Herdrich, P.-M. Hillenbrand, A. Kalinin, F. M. Kröger, M. Lestinsky, Yu. A. Litvinov, E. B. Menz, W. Middents, T. Morgenroth, N. Petridis, Ph. Pfäfflein, M. S. Sanjari, R. S. Sidhu, U. Spillmann, R. Schuch, S. Schippers, S. Trotsenko, L. Varga, G. Vorobyev, and Th. Stöhlker
X-ray emission associated with radiative recombination for Pb⁸²⁺ ions at threshold energies
Physical Review A 105, 052804 (2022)

Abstract: For decelerated bare lead ions at a low beam energy of 10 MeV/u, the x-ray emission associated with radiative recombination (RR) at threshold energies has been studied at the electron cooler of CRYRING@ESR at GSI, Darmstadt. In our experiment, we observed the full x-ray emission pattern by utilizing dedicated x-ray detection chambers installed at 0∘ and 180∘ observation geometry. Most remarkably, no line distortion effects due to delayed emission are present in the well-defined x-ray spectra, spanning a wide range of x-ray energies (from about 5 to 100 keV), which enables us to identify fine-structure resolved Lyman, Balmer, and Paschen x-ray lines along with the RR transitions into the K, L, and M shells of the ions. For comparison with theory, an elaborate theoretical model is established taking into account the initial population distribution via RR for all atomic levels up to Rydberg states with principal quantum number n=165 in combination with time-dependent feeding transitions. Within the statistical accuracy, the experimental data are in very good agreement with the results of rigorous relativistic predictions. Most notably, this comparison sheds light on the contribution of prompt and delayed x-ray emission (up to 70 ns) to the observed x-ray spectra, originating in particular from yrast transitions into inner shells.

P.-M. Hillenbrand, S. Hagmann, Y. S. Kozhedub, E. P. Benis, C. Brandau, R. J. Chen, D. Dmytriiev, O. Forstner, J. Glorius, R. E. Grisenti, A. Gumberidze, M. Lestinsky, Yu. A. Litvinov, E. B. Menz, T. Morgenroth, S. Nanos, N. Petridis, Ph. Pfäfflein, H. Rothard, M. S. Sanjari, R. S. Sidhu, U. Spillmann, S. Trotsenko, I. I. Tupitsyn, L. Varga, and Th. Stöhlker
Single and double K-shell vacancy production in slow Xe⁵⁴⁺,⁵³⁺-Xe collisions
Physical Review A 105, 022810 (2022)

Abstract: We present an experimental and theoretical study of symmetric Xe54++Xe collisions at 50, 30, and 15 MeV/u, corresponding to strong perturbations with vK/vp=1.20, 1.55, and 2.20, respectively (vK is the classical K-shell orbital velocity and vp is the projectile velocity), as well as Xe53++Xe collisions at 15 MeV/u. For each of these systems, x-ray spectra are measured under a forward angle of 35∘ with respect to the projectile beam. Target satellite and hypersatellite radiation Kαs2,1 and Kαhs2,1, respectively, are analyzed and used to derive cross-section ratios for double-to-single target K-shell vacancy production. We compare our experimental results to relativistic time-dependent two-center calculations.

2021

P.-M. Hillenbrand, K. N. Lyashchenko, S. Hagmann, O. Andreev, D. Banas, E. P. Benis, I. Bondarev, C. Brandau, E. De Filippo, O. Forstner, J. Glorius, R. E. Grisenti, A. Gumberidze, D. L. Guo, M. O. Herdrich, M. Lestinsky, Y. Litvinov, V. Pagano, N. Petridis, M. S. Sanjari, D. Schury, U. Spillmann, S. Trotsenko, M. Vockert, A. B. Voitkiv, G. Weber, and T. Stoehlker
Electron-loss-to-continuum cusp in collisions of U89+ with N-2 and Xe
Physical Review A 104, 012809 (2021)

Abstract: We study the electron-loss-to-continuum (ELC) cusp experimentally and theoretically by comparing the ionization of U89+ projectiles in collisions with N-2 and Xe targets, at a beam energy of 75.91 MeV/u. The coincidence measurement between the singly ionized projectile and the energy of the emitted electron is used to compare the shape of the ELC cusp at weak and strong perturbations. A significant energy shift for the centroid of the electron cusp is observed for the heavy target of Xe as compared to the light target of N-2. Our results provide a stringent test for fully relativistic calculations of double-differential cross sections performed in the first-order approximation and in the continuum-distorted-wave approach.

2020

A. Gumberidze, C. Kozhuharov, R. Zhang, S. Trotsenko, Y. Kozhedub, R. Du, H. Bois, F. Beyer, K.-H. Blumenhagen, C. Brandau, A. Bräuning-Demian, W. Chen, O. Forstner, B. Gao, T. Gassner, R. Grisenti, S. Hagmann, P.-M. Hillenbrand, P. Indelicato, A. Kumar, M. Lestinsky, Y. Litvinov, N. Petridis, D. Schury, U. Spillmann, C. Trageser, M. Trassinelli, X. Tu, and T. Stöhlker
Impact parameter sensitive study of inner-shell atomic processes in Xe54+, Xe52+ → Xe collisions
Journal of Physics: Conference Series 1412, 142015 (2020)

Abstract: In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms. The projectile and target x-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35 - 70 fm.

D. Leimbach, J. Karls, Y. Guo, R. Ahmed, J. Ballof, L. Bengtsson, F. Boix Pamies, A. Borschevsky, K. Chrysalidis, E. Eliav, D. Fedorov, V. Fedosseev, O. Forstner, N. Galland, R. Garcia Ruiz, C. Granados, R. Heinke, K. Johnston, A. Koszorus, U. Köster, M. Kristiansson, Y. Liu, B. Marsh, P. Molkanov, L. Pašteka, J. Ramos, E. Renault, M. Reponen, A. Ringvall-Moberg, R. Rossel, D. Studer, A. Vernon, J. Warbinek, J. Welander, K. Wendt, S. Wilkins, D. Hanstorp, and S. Rothe
The electron affinity of astatine
Nature Communications 11, 3824 (2020)

Abstract: One of the most important properties influencing the chemical behavior of an element is the electron affinity (EA). Among the remaining elements with unknown EA is astatine, where one of its isotopes, 211At, is remarkably well suited for targeted radionuclide therapy of cancer. With the At− anion being involved in many aspects of current astatine labeling protocols, the knowledge of the electron affinity of this element is of prime importance. Here we report the measured value of the EA of astatine to be 2.41578(7)\thinspaceeV. This result is compared to state-of-the-art relativistic quantum mechanical calculations that incorporate both the Breit and the quantum electrodynamics (QED) corrections and the electron--electron correlation effects on the highest level that can be currently achieved for many-electron systems. The developed technique of laser-photodetachment spectroscopy of radioisotopes opens the path for future EA measurements of other radioelements such as polonium, and eventually super-heavy elements.

O. Forstner, J. Müller, and K. Stiebing
Opportunities for negative ions studies at the Frankfurt Low-energy Storage Ring (FLSR)
Hyperfine Interactions 241, 53 (2020)

Abstract: The room-temperature electrostatic heavy ion storage ring FLSR was originally designed to study the collision dynamics of atoms and molecules. Recently it has been equipped with a RF plasma ion source combined with a charge exchange cell to be able to perform studies with negative ions in the ring. In preliminary experiments beams of He−, O− and OH− could successfully be stored. The measured lifetime of the metastable He−--ion is in good agreement with previous results, showing that the lifetime measurement in this case is not limited by the storage time due to collisional detachment. In the case of O− and OH− storage times in the order of seconds have been achieved. In a next step laser beams will be introduced in the ring allowing photodetachment studies of vibrationally cold molecules.

P.-M. Hillenbrand, S. Hagmann, M. Groshev, D. Banaś, E. Benis, C. Brandau, E. De Filippo, O. Forstner, J. Glorius, R. Grisenti, A. Gumberidze, D. Guo, B. Hai, M. Herdrich, M. Lestinsky, Y. Litvinov, E. Pagano, N. Petridis, M. Sanjari, D. Schury, U. Spillmann, S. Trotsenko, M. Vockert, G. Weber, V. Yerokhin, and Th. Stöhlker
Radiative electron capture to the continuum in U89+ + N2 collisions: Experiment and theory
Physical Review A 101, 022708 (2020)

Abstract: For U89+ projectiles colliding at a beam energy of 75.91 MeV/u with a N2 target, we present a coincidence measurement between the cusp electrons emitted under an angle of 0° with respect to the projectile beam and the photons emitted under a polar angle of 90°. This radiative-electron-capture-to-continuum cusp directly probes the theory of electron-nucleus bremsstrahlung up to the high-energy endpoint in inverse kinematics. In the present study, significant improvement with respect to the experimental accuracy has been achieved, resulting in a finer agreement between experimental and theoretical results.

O. Forstner, D. Bemmerer, T. Cowan, R. Dressler, A. Junghans, D. Schumann, T. Stöhlker, T. Szücs, A. Wagner, and K. Zuber
Opportunities for measurements of astrophysical-relevant alpha-capture reaction rates at CRYRING@ESR
X-Ray Spectrometry 49, 129 (2020)

Abstract: The heavy-ion storage ring CRYRING@ESR has recently been installed and commissioned at GSI as one of the first installations of the upcoming Facility for Antiproton and Ion Research (FAIR). It is designed to store highly charged ions in the energy range between 300?keV/u and about 10?MeV/u. It will incorporate a gas-jet target providing high-density jets of, among other gases, hydrogen and helium. This will allow to study alpha-capture reaction rates of astrophysical interest in the energy range of the Gamow window for core-collapse supernovae. Special interest comes from the long-lived radio-isotope 44Ti (t1/2?=?58.9?years), which is supposed to be produced in the alpha-rich freeze-out during such an event. The nucleosynthesis of this isotope is of great interest, as the amount of material produced can be estimated by direct observation in remnants of recent supernovae. The disagreements between the observations and the estimations from astrophysical models show the need of more experimental data for the production and consumption reactions in the energy range of a core-collapse supernova. In this article, we will describe the proposed method of injecting beams of 44Ti into CRYRING@ESR and performing the actual reaction rate measurements.

2019

F. Ozturk, B. Akkus, D. Atanasov, H. Beyer, F. Bosch, D. Boutin, C. Brandau, P. Bühler, R. Cakirli, R. Chen, W. Chen, X. Chen, I. Dillmann, C. Dimopoulou, W. Enders, H. Essel, T. Faestermann, O. Forstner, B. Gao, H. Geissel, R. Gernhäuser, R. Grisenti, A. Gumberidze, S. Hagmann, T. Heftrich, M. Heil, M. Herdrich, P.-M. Hillenbrand, T. Izumikawa, P. Kienle, C. Klaushofer, C. Kleffner, C. Kozhuharov, R. Knöbel, O. Kovalenko, S. Kreim, T. Kühl, C. Lederer-Woods, M. Lestinsky, S. Litvinov, Y. Litvinov, Z. Liu, X. Ma, L. Maier, B. Mei, H. Miura, I. Mukha, A. Najafi, D. Nagae, T. Nishimura, C. Nociforo, F. Nolden, T. Ohtsubo, Y. Oktem, S. Omika, A. Ozawa, N. Petridis, J. Piotrowski, R. Reifarth, J. Rossbach, R. Sánchez, M. Sanjari, C. Scheidenberger, R. Sidhu, H. Simon, U. Spillmann, M. Steck, Th. Stöhlker, B. Sun, L. Susam, F. Suzaki, T. Suzuki, S. Torilov, C. Trageser, M. Trassinelli, S. Trotsenko, X. Tu, P. Walker, M. Wang, G. Weber, H. Weick, N. Winckler, D. Winters, P. Woods, T. Yamaguchi, X. Xu, X. Yan, J. Yang, Y. Yuan, Y. Zhang, and X. Zhou
New test of modulated electron capture decay of hydrogen-like ¹⁴²Pm ions: Precision measurement of purely exponential decay
Physics Letters B 797, 134800 (2019)

Abstract: An experiment addressing electron capture (EC) decay of hydrogen-like ¹⁴²Pm⁶⁰⁺ ions has been conducted at the experimental storage ring (ESR) at GSI. The decay appears to be purely exponential and no modulations were observed. Decay times for about 9000 individual EC decays have been measured by applying the single-ion decay spectroscopy method. Both visually and automatically analysed data can be described by a single exponential decay with decay constants of 0.0126(7) s⁻¹ for automatic analysis and 0.0141(7) s⁻¹ for manual analysis. If a modulation superimposed on the exponential decay curve is assumed, the best fit gives a modulation amplitude of merely 0.019(15), which is compatible with zero and by 4.9 standard deviations smaller than in the original observation which had an amplitude of 0.23(4).

S. Rothe, J. Sundberg, J. Welander, K. Chrysalidis, T. D. Goodacre, V. Fedosseev, S. Fiotakis, O. Forstner, R. Heinke, K. Johnston, T. Kron, U. Köster, Y. Liu, B. Marsh, A. Ringvall-Moberg, R. E. Rossel, C. Seiffert, D. Studer, K. Wendt, and D. Hanstorp
Laser photodetachment of radioactive ¹²⁸I⁻
Journal of Physics G: Nuclear and Particle Physics 44, 104003 (2019)

Abstract: The first experimental investigation of the electron affinity (EA) of a radioactive isotope has been conducted at the CERN-ISOLDE radioactive ion beam facility. The EA of the radioactive iodine isotope ¹²⁸I (t 1/2 = 25 min) was determined to be 3.059 052(38) eV. The experiment was conducted using the newly developed Gothenburg ANion Detector for Affinity measurements by Laser PHotodetachment (GANDALPH) apparatus, connected to a CERN-ISOLDE experimental beamline. ¹²⁸I was produced in fission induced by 1.4 GeV protons striking a thorium/tantalum foil target and then extracted as singly charged negative ions at a beam energy of 20 keV. Laser photodetachment of the fast ion beam was performed in a collinear geometry inside the GANDALPH chamber. Neutral atoms produced in the photodetachment process were detected by allowing them to impinge on a glass surface, creating secondary electrons which were then detected using a channel electron multiplier. The photon energy of the laser was tuned across the threshold of the photodetachment process and the detachment threshold data were fitted to a Wigner law function in order to extract the EA. This first successful demonstration of photodetachment at an isotope separator on line facility opens up the opportunity for future studies of the fundamental properties of negatively charged radioactive isotopes such as the EA of astatine and polonium.

A. Wallner, M. Bichler, L. Coquard, I. Dillmann, O. Forstner, R. Golser, M. Heil, F. Käppeler, W. Kutschera, C. Lederer-Woods, M. Martschini, A. Mengoni, S. Merchel, L. Michlmayr, A. Priller, P. Steier, and M. Wiescher
Stellar and thermal neutron capture cross section of ⁹Be
Physical Review C 99, 015804 (2019)

Abstract: The neutron capture cross section of 9Be for stellar energies was measured via the activation technique using the Karlsruhe Van de Graaff accelerator in combination with accelerator mass spectrometry at the Vienna Environmental Research Accelerator. To characterize the energy region of interest for astrophysical applications, activations were performed in a quasistellar neutron spectrum of kT=25 keV and for a spectrum at En=473±53 keV. Despite the very small cross section, the method used provided the required sensitivity for obtaining fairly accurate results of 10.4±0.6 and 8.4±1.0μb, respectively. With these data it was possible to constrain the cross section shape up to the first resonances at 622 and 812 keV, thus allowing for the determination of Maxwellian-averaged cross sections at thermal energies between kT=5 and 100 keV. In addition, we report a new experimental cross section value at thermal energy of σth=8.31±0.52 mb.

2017

A. Gumberidze, C. Kozhuharov, R. Zhang, S. Trotsenko, Y. Kozhedub, R. DuBois, H. Beyer, K.-H. Blumenhagen, C. Brandau, A. Bräuning-Demian, W. Chen, O. Forstner, B. Gao, T. Gassner, R. Grisenti, S. Hagmann, P.-M. Hillenbrand, P. Indelicato, A. Kumar, M. Lestinsky, Yu. A. Litvinov, N. Petridis, D. Schury, U. Spillmann, C. Trageser, M. Trassinelli, X. Tu, and Th. Stöhlker
Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring
Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 408, 27 (2017)

Abstract: In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35–70 fm.