Publikationen von
Burgard Beleites
Alle Publikationen des HI Jena
2021
Abstract: We employed N-benzyl-2-methyl-4-nitroaniline (BNA) crystals bonded on substrates of different thermal conductivity to generate THz radiation by pumping with 800 nm laser pulses. Crystals bonded on sapphire substrate provided four times more THz yield than glass substrate. A pyrodetector and a single-shot electro-optic (EO) diagnostic were employed for measuring the energy and temporal characterisation of the THz pulse. Systematic studies were carried out for the selection of a suitable EO crystal, which allowed accurate determination of the emitted THz spectrum from both substrates. Subsequently, the THz source and single-shot electro-optic detection scheme were employed to measure the complex refractive index of window materials in the THz range.
Abstract: We experimentally investigated the accelerated proton beam characteristics such as maximum energy and number by varying the incident laser parameters. For this purpose, we varied the laser energy, focal spot size, polarization, and pulse duration. The proton spectra were recorded using a single-shot Thomson parabola spectrometer equipped with a microchannel plate and a high-resolution charge-coupled device with a wide detection range from a few tens of keV to several MeV. The outcome of the experimental findings is discussed in detail and compared to other theoretical works.
2020
Abstract: Generation of terahertz radiation by optical rectification of intense near-infrared laser pulses in N-benzyl-2-methyl-4-nitroaniline (BNA) is investigated in detail by carrying out a complete characterization of the terahertz radiation. We studied the scaling of THz yield with pump pulse repetition rate and fluence which enabled us to predict the optimal operating conditions for BNA crystals at room temperature for 800 nm pump wavelength. Furthermore, recording the transmitted laser spectrum allowed us to calculate the nonlinear refractive index of BNA at 800 nm.
2018
Abstract: The interaction of a high-power laser pulse with a thin foil can generate energetic, broadband terahertz radiation. Here, we report an experimental investigation on the influence of incident laser polarization and wavelength on the terahertz emission and maximum proton energy from the target rear surface. For similar incident laser intensities, the characteristics of the particle beams and the terahertz radiation show a wavelength dependence. The results fit well with the established scaling laws for the terahertz yield and the maximum proton energy as a function of the incident laser irradiance.